DOI QR코드

DOI QR Code

Comparative mitogenomics of Pleurotus ostreatus Gonji7ho and its cap color mutant

  • Oh, Min-Ji (Mushroom Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Na, Kyeong Sook (Department of Mushroom Science, Korea National College of Agriculture and Fisheries) ;
  • Jung, Hwa Jin (Department of Mushroom Science, Korea National College of Agriculture and Fisheries) ;
  • Lee, Young Kuk (Department of Mushroom Science, Korea National College of Agriculture and Fisheries) ;
  • Ryu, Jae-San (Department of Mushroom Science, Korea National College of Agriculture and Fisheries)
  • Received : 2022.04.24
  • Accepted : 2022.06.21
  • Published : 2022.06.30

Abstract

Pleurotus ostreatus is a globally cultivated mushroom crop. Cap color is a quality factor in P. ostreatus. However, cap color can spontaneously mutate, degrading the quality of the mushroom on the market. Early detection and removal of mutant strains is the best way to maintain the commercial value of the crop. To detect the cap color mutant Gonji7ho, molecular markers were developed based on insertion/deletions (InDels) derived from the comparison of mitogenomes of Gonji7ho and Gonji7hoM mushrooms. Sequencing, assembly, and comparative analysis of the two mitogenomes revealed genome sizes of 73,212 bp and 72,576 bp with 61 and 57 genes or open reading frames (ORFs) in P. ostreatus Gonji7ho and Gonji7hoM, respectively. Fourteen core protein-encoding genes, two rRNA, and 24 tRNA with some OFRs were predicted. Of the 61 genes or OFRs in the wild type, dpo, rpo, and two orf139 were missing (or remnant) in the mutant strain. Molecular markers were developed based on the sequence variations (InDels) between the two mitogenomes. Six polymorphic molecular markers could detect the mutated mitochondria by PCR. These results provide basic knowledge of the mitogenomes of wild-type and mutant P. ostreatus, and can be applied to discriminate mutated mitochondria.

Keywords

Acknowledgement

This work was supported by the RDA [수요자 맞춤 양송이·큰느타리 품종 육성 및 보급(2공동), grant number PJ01657602].

References

  1. Bonatti M, Karnopp P, Soares HM, Furlan SA. 2004. Evaluation of Pleurotus ostreatus and Pleurotus sajor-caju nutritional characteristics when cultivated in different lignocellulosic wastes. Food Chem 88: 425-428. https://doi.org/10.1016/j.foodchem.2004.01.050
  2. Carver T, Harris SR, Berriman M, Parkhill J, McQuillan JA. 2012. Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics 28: 464-469. https://doi.org/10.1093/bioinformatics/btr703
  3. Cheng GY, Liu J, Tao MX, Lu CM, Wu GR. 2012. Activity, thermostability and isozymes of superoxide dismutase in 17 edible mushrooms. J Food Compost Anal 26: 136-143. https://doi.org/10.1016/j.jfca.2012.01.001
  4. Cherno N, Osokina S, Nikitina A. 2013. Chemical composition of Agaricus bisporus and Pleurotus ostreatus fruiting bodies and their morphological parts. Food Environ Safety 12: 291-200.
  5. Choi JI, Ha TM, Jeon DH, Ju YC, Cheong JC. 2013. Characteristics and breeding of a long-term storable oyster mushroom (Pleurotus ostreatus) variety [Gonji-7ho]. J Mushrooms 11: 149-153. https://doi.org/10.14480/JM.2013.11.3.149
  6. Choi JI, Lee YH, Ha TM, Jeon DH, Chi JH, Shin PG. 2015. Characteristics of new mid-high temperature adaptable oyster mushroom variety [Heuktari] for bottle culture. J Mushrooms 13: 74-78. https://doi.org/10.14480/JM.2015.13.1.74
  7. Choi JI, Jung HJ, Oh MJ, Kim MK, Ryu JS. 2021. Identification of Pleurotus ostreatus cultivars with the application of multiplex-simple sequence repeat markers. J Mushrooms 9: 76-80.
  8. De La Bastide PY, Sonnenberg A, Van Griensven L, Anderson JB, Horgen PA. 1997. Mitochondrial haplotype influences mycelial growth of Agaricus bisporus heterokaryons. Appl Environ Microbiol 63: 3426-3431 https://doi.org/10.1128/aem.63.9.3426-3431.1997
  9. de Melo Teixeira M, Lang BF, Matute DR, Stajich JE, Barker B. 2021. The mitochondrial genomes of the human pathogens Coccidioides immitis and C. posadasii. G3 (Bethesda) 11. jkab132. https://doi.org/10.1093/g3journal/jkab132.
  10. Gao W, Weijn A, Baars JJ, Mes JJ, Visser RG, Sonnenberg AS. 2015. Quantitative trait locus mapping for bruising sensitivity and cap color of Agaricus bisporus (button mushrooms). Fungal Genet Biol 77: 69-81. https://doi.org/10.1016/j.fgb.2015.04.003
  11. Greiner S, Lehwark P, Bock R. 2019. OrganellarGenomeDRAW (OGDRAW) version 1.3. 1: expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Res 47: W59-W64. https://doi.org/10.1093/nar/gkz238
  12. Holm JB, Humphrys MS, Robinson CK, Settles ML, Ott S, Fu L, Ravel J. 2019. Ultrahigh-throughput multiplexing and sequencing of> 500-base-pair amplicon regions on the Illumina HiSeq 2500 platform. MSystems 4: e00029-19.
  13. Im CH, Park YH, Hammel KE, Park B, Kwon SW, Ryu H, Ryu JS. 2016. Construction of a genetic linkage map and analysis of quantitative trait loci associated with the agronomically important traits of Pleurotus eryngii. Fungal Genet Bio 92: 50-64. https://doi.org/10.1016/j.fgb.2016.05.002
  14. Kawaguchi N, Hayashi M, Chen FC, Shimomura N, Yamaguchi T, Aimi T. 2019. Genetic analyses of causal genes of albinism (white fruiting body) in Grifola frondosa. J Wood Sci 65: 1-9. https://doi.org/10.1186/s10086-019-1786-4
  15. Kim HK, Kim YG, Lee BJ, Lee KS, Yang ES, Park MS, Kim HG. 2008. Characteristics of mycelial growth and fruit body development of white Pleurotus ostreatus' Miso'. Kor J Mycol 36: 58-62. https://doi.org/10.4489/KJM.2008.36.1.058
  16. Kitamoto Y. 1997. Correlation between the white colored fruit body trait and the relative activities of superoxide dismutase and phenol oxidase in hybrid dikaryons of Flammulina velutipes. Mushroom Sci Biotechnol 5: 21-28.
  17. Lee HO, Choi JW, Baek JH, Oh JH, Lee SC, Kim CK. 2018. Assembly of the mitochondrial genome in the Campanulaceae family using Illumina low-coverage sequencing. Genes (Basel) 9: 383. https://doi.org/10.3390/genes9080383
  18. Lee WJ, Kocher TD. 1995. Complete sequence of a sea lampey (Petromyzon marinus) mitochondrial genome: early establishment of the vertebrate genome organization. Genetics 139: 873-887. https://doi.org/10.1093/genetics/139.2.873
  19. Li Q, Chen C, Xiong C, Jin X, Chen Z, Huang W. 2018. Comparative mitogenomics reveals large-scale gene rearrangements in the mitochondrial genome of two Pleurotus species. Appl Microbiol Biotechnol 102: 6143-6153. https://doi.org/10.1007/s00253-018-9082-6
  20. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, DePristo MA. 2010. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20: 1297-1303. https://doi.org/10.1101/gr.107524.110.
  21. Mukherjee G, Mishra T, Deshmukh SK. 2017. Fungal pigments: An overview. In T. Satyanarayana, S.K. Deshmukh & B.N. Johri. (ed.), Developments in fungal biology and applied mycology, Springer, Singapore. 525-541. https://doi.org/10.1007/978-981-10-4768-8_26
  22. Park B, Ha BS, Lee SH, Kim MK, Choi JI, Ryu JS. 2019. Variable-number tandem repeat loci-discriminating Pleurotus ostreatus cultivars. Mycoscience 60: 132-135. https://doi.org/10.1016/j.myc.2018.09.004
  23. Robison MM, Wolyn DJ. 2005. A mitochondrial plasmid and plasmid-like RNA and DNA polymerases encoded within the mitochondrial genome of carrot (Daucus carota L.). Curr Genet 47: 57-66. https://doi.org/10.1007/s00294-004-0549-x
  24. Rosania GR. 2005. Mitochondria give cells a tan. Chem Biol 12: 412-413. https://doi.org/10.1016/j.chembiol.2005.04.002
  25. Royse DJ, Baars J, Tan Q. 2017. Current overview of mushroom production in the world. In D.C. Zied & A. Pardo-Giminez (ed.), Edible and medicinal mushrooms: technology and applications, John Wiley & Sons Ltd., Hoboken. 5-13
  26. Rozen S, Skaletsky H. 2000. Primer3 on the WWW for general users and for biologist programmers. In S. Misener, and S.A. Krawetz (ed.), Bioinformatics methods and protocols: methods in molecular biology, Humana Press, Totowa, New Jersey, USA. 365-386.
  27. Ryu JS, Kim MK, Im CH, Shin PG. 2015. Development of cultivation media for extending the shelf-life and improving yield of king oyster mushrooms (Pleurotus eryngii). Sci Hortic 193: 121-126. https://doi.org/10.1016/j.scienta.2015.07.005
  28. Schwartz S, Kent WJ, Smit A, Zhang Z, Baertsch R, Hardison RC, Haussler D, Miller W. 2003. Human-mouse alignments with BLASTZ. Genome Res 13: 103-107. http://genome.cshlp.org/content/13/1/103.long. https://doi.org/10.1101/gr.809403
  29. Team RDC. 2013. R: A language and environment for statistical computing. ISBN 3-900051-07-0. R foundation for statistical computing. Vienna, Austria, url: http://www. R-project. org.
  30. Tillich M, Lehwark P, Pellizzer T, Ulbricht-Jones ES, Fischer A, Bock R, Greiner S. 2017. GeSeq-Versatile and accurate annotation of organelle genomes. Nucleic Acids Res 45: W6-W11. https://doi.org/10.1093/nar/gkx391
  31. Tuyen DV, Phuong HN, Cone JW, Baars JJP, Sonnenberg ASM, Hendriks WH. 2013. Effect of fungal treatments of fibrous agricultural by-products on chemical composition and in vitro rumen fermentation and methane production. Bioresour Technol 129: 256-263. https://doi.org/10.1016/j.biortech.2012.10.128
  32. Wang G, Chen L, Tang W, Wang Y, Zhang Q, Wang H, Zhang J. 2021. Identifying a melanogenesis-related candidate gene by a high-quality genome assembly and population diversity analysis in Hypsizygus marmoreus. J Genet Genomics 48: 75-87. https://doi.org/10.1016/j.jgg.2021.01.002
  33. Wang X, Wang L. 2016. GMATA: an integrated software package for genome-scale SSR mining, marker development and viewing. Front Plant Sci 7: 1350.
  34. Wang Y, Zeng F, Hon CC, Zhang Y, Leung FCC. 2008. The mitochondrial genome of the Basidiomycete fungus Pleurotus ostreatus (oyster mushroom). FEMS Microbiol Lett 280: 34-41. https://doi.org/10.1111/j.1574-6968.2007.01048.x
  35. Wu SR, Zhao CY, Hou B, Tai LM, Gui MY. 2013. Analysis on Chinese edible fungus production area layout of nearly five years. Edible Fungi China 1: 51-53.
  36. Ye LY, Deng YJ, Mukhtar I, Meng GL, Song YJ, Cheng B, Wu XP. 2020. Mitochondrial genome and diverse inheritance patterns in Pleurotus pulmonarius. J Microbiol 58: 142-152. https://doi.org/10.1007/s12275-020-9318-x
  37. Zou Z, Zhang J. 2021. Are nonsynonymous transversions generally more deleterious than nonsynonymous transitions? Mol Biol Evol 38: 181-191. https://doi.org/10.1093/molbev/msaa200