• Title/Summary/Keyword: Genome Analysis

Search Result 2,364, Processing Time 0.036 seconds

Molecular Characterization of the HERV-W Env Gene in Humans and Primates: Expression, FISH, Phylogeny, and Evolution

  • Kim, Heui-Soo;Kim, Dae-Soo;Huh, Jae-Won;Ahn, Kung;Yi, Joo-Mi;Lee, Ja-Rang;Hirai, Hirohisa
    • Molecules and Cells
    • /
    • v.26 no.1
    • /
    • pp.53-60
    • /
    • 2008
  • We characterized the human endogenous retrovirus (HERV-W) family in humans and primates. In silico expression data indicated that 22 complete HERV-W families from human chromosomes 1-3, 5-8, 10-12, 15, 19, and X are randomly expressed in various tissues. Quantitative real-time RT-PCR analysis of the HERV-W env gene derived from human chromosome 7q21.2 indicated predominant expression in the human placenta. Several copies of repeat sequences (SINE, LINE, LTR, simple repeat) were detected within the complete or processed pseudo HERV-W of the human, chimpanzee, and rhesus monkey. Compared to other regions (5'LTR, Gag, Gag-Pol, Env, 3'LTR), the repeat family has been mainly integrated into the region spanning the 5'LTRs of Gag (1398 bp) and Pol (3242 bp). FISH detected the HERV-W probe (fosWE1) derived from a gorilla fosmid library in the metaphase chromosomes of all primates (five hominoids, three Old World monkeys, two New World monkeys, and one prosimian), but not in Tupaia. This finding was supported by molecular clock and phylogeny data using the divergence values of the complete HERV-W LTR elements. The data suggested that the HERV-W family was integrated into the primate genome approximately 63 million years (Myr) ago, and evolved independently during the course of primate radiation.

Structural Analysis of Repeated Tomato Phenylalanine Ammonia-Lyase Gene (PAL X1, PAL X2) (반복배열된 토마토 phenylalanine ammonia-Iyase(p AL X1, PAL X2) 유전자의 구조해석)

  • Lee, Shin-Woo;Yeo, Yun-Soo
    • Applied Biological Chemistry
    • /
    • v.42 no.1
    • /
    • pp.34-38
    • /
    • 1999
  • We observed the structure of phenylalanine ammonia-lyase gene (PAL) which is one of the best studied plant defense-related genes responding to pathogen infection by producing suberin, lignin, and phytoalexins. In tomato, at least 5 different genetic loci have been identified by genomic southern blot hybridization and nucleotide sequence analyses of partially cloned gene fragments (Lee et al. 1992). However, our results suggest that two other isoforms designated as PAL X1 and PAL X2 are located on the chromosome in tomato plant. Furthermore, the preliminary results obtained from southern blot hybridization analyses of subcloned fragment digested with several restriction endonuclease indicated that PAL X1 and PAL X2 clones contain at least two copies of PAL gene and partial nucleotide sequence analyses of each subcloned fragment with the same primer taken from known nucleotide sequence of PAL5 gene indicated that they are located side by side on the same chromosome.

  • PDF

Triclosan Resistance in a Bacterial Fish Pathogen, Aeromonas salmonicida subsp. salmonicida, is Mediated by an Enoyl Reductase, FabV

  • Khan, Raees;Lee, Myung Hwan;Joo, Haejin;Jung, Yong-Hoon;Ahmad, Shabir;Choi, Jinhee;Lee, Seon-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.4
    • /
    • pp.511-520
    • /
    • 2015
  • Triclosan, the widely used biocide, specifically targets enoyl-acyl carrier protein reductase (ENR) in the bacterial fatty acid synthesis system. Although the fish pathogen Aeromonas salmonicida subsp. salmonicida exhibits triclosan resistance, the nature of this resistance has not been elucidated. Here, we aimed to characterize the triclosan resistance of A. salmonicida subsp. salmonicida causing furunculosis. The fosmid library of triclosan-resistant A. salmonicida subsp. salmonicida was constructed to select a fosmid clone showing triclosan resistance. With the fosmid clone showing triclosan resistance, a subsequent secondary library search resulted in the selection of subclone pTSR-1. DNA sequence analysis of pTSR-1 revealed the presence of a chromosomal-borne fabV-encoding ENR homolog. The ENR of A. salmonicida (FabVas) exhibited significant homology with previously known FabV, including the catalytic domain YX(8)K. fabVas introduction into E. coli dramatically increased its resistance to triclosan. Heterologous expression of FabVas might functionally replace the triclosan-sensitive FabI in vivo to confer E. coli with triclosan resistance. A genome-wide search for fabVas homologs revealed the presence of an additional fabV gene (fabVas2) paralog in A. salmonicida strains and the fabVas orthologs from other gram-negative fish pathogens. Both of the potential FabV ENRs expressed similarly with or without triclosan supplement. This is the first report about the presence of two potential FabV ENRs in a single pathogenic bacterium. Our result suggests that triclosan-resistant ENRs are widely distributed in various bacteria in nature, and the wide use of this biocide can spread these triclosan-tolerant ENRs among fish pathogens and other pathogenic bacteria.

Comparison of the Genomes of Deinococcal Species Using Oligonucleotide Microarrays

  • Jung, Sun-Wook;Joe, Min-Ho;Im, Seong-Hun;Kim, Dong-Ho;Lim, Sang-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.12
    • /
    • pp.1637-1646
    • /
    • 2010
  • The bacterium Deinococcus radiodurans is one of the most resistant organisms to ionizing radiation and other DNA-damaging agents. Although, at present, 30 Deinococcus species have been identified, the whole-genome sequences of most species remain unknown, with the exception of D. radiodurans (DRD), D. geothermalis, and D. deserti. In this study, comparative genomic hybridization (CGH) microarray analysis of three Deinococcus species, D. radiopugnans (DRP), D. proteolyticus (DPL), and D. radiophilus (DRPH), was performed using oligonucleotide arrays based on DRD. Approximately 28%, 14%, and 15% of 3,128 open reading frames (ORFs) of DRD were absent in the genomes of DRP, DPL, and DRPH, respectively. In addition, 162 DRD ORFs were absent in all three species. The absence of 17 randomly selected ORFs was confirmed by a Southern blot. Functional classification showed that the absent genes spanned a variety of functional categories: some genes involved in amino acid biosynthesis, cell envelope, cellular processes, central intermediary metabolism, and DNA metabolism were not present in any of the three deinococcal species tested. Finally, comparative genomic data showed that 120 genes were Deinococcus-specific, not the 230 reported previously. Specifically, ddrD, ddrO, and ddrH genes, previously identified as Deinococcus-specific, were not present in DRP, DPL, or DRPH, suggesting that only a portion of ddr genes are shared by all members of the genus Deinococcus.

An ${\beta}$-1,4-Xylanase with Exo-Enzyme Activity Produced by Paenibacillus xylanilyticus KJ-03 and Its Cloning and Characterization

  • Park, Dong-Ju;Lee, Yong-Suk;Chang, Jie;Fang, Shu-Jun;Choi, Yong-Lark
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.3
    • /
    • pp.397-404
    • /
    • 2013
  • Paenibacillus xylanilyticus KJ-03 was isolated from soil samples obtained from a field with Amorphophallus konjac plants. A gene encoding xylanase was isolated from KJ-03 and cloned using a fosmid library. The xynA gene encodes xylanase; it consists of 1,035 bp and encodes 345 amino acids. The amino acid sequence deduced from the P. xylanilyticus KJ-03 xylanase showed 81% and 69% identities with those deduced from the P. polymyxa E681 and Paenibacillus sp. HPL-001 xylanases, respectively. The xynA gene comprises a single domain, consisting of a catalytic domain of the glycosyl hydrolase (GH) 10 family. The xynA gene was expressed in Escherichia coli BL21 (trxB), and the recombinant xylanase was purified by Niaffinity chromatography. The purified xylanase showed optimum activity with birchwood xylan as a substrate at $40^{\circ}C$ and pH 7.4. Treatment with $Mg^{2+}$ and $Li^+$ showed a slight decrease in XynA activity; however, treatment with 5 mM $Cu^{2+}$ completely inhibited its activity. The results of the thin layer chromatography analysis indicated that the major hydrolysis product was xylobiose and small amounts of xylose and xylotriose. XynA showed increased activity with oat spelt xylan and birchwood xylan, but showed only slight activity with locust bean gum.

Oxidative Stress by Arsenic Trioxide in Cultured Rat Cardiomyocytes, $H_9C_2$ Cells (배양 심근세포에서 저농도 삼산화비소에 의한 산화적 스트레스 발생)

  • Park Eun-Jung;Park Kwang-Sik
    • Environmental Analysis Health and Toxicology
    • /
    • v.21 no.1 s.52
    • /
    • pp.71-79
    • /
    • 2006
  • Epidemiologic studies have showed a close correlation between arsenic exposure and heart disease such as, cardiovascular problem, ischemic heart disease, infarction, atherosclerosis and hypertension in human. It may increase the mortality of high risk group with heart disease. Regarding the mechanism studies of heart failure, blood vessel, vascular smooth muscle cells and endothelial cells have long been focused as the primary targets in arsenic exposure but there are only a few studies on the cardiomyocytes. In this study, the generation of oxidative stress by low dose of arsenic trioxide was investigated in rat cardiomyocytes. By direct measurement of reactive oxygen species and fluorescent microscopic observation using fluorescent dye 2',7'-dichlorofluorescin diacetate, reactive oxygen species were found to be generated without cell death, where cells are treated with 0.1 ppm arsenic for 24 hours. With the induction of reactive oxygen species, GSH level was decreased by the same treatment. However, DNA damage did not seem to be serious by DAPI staining, while high dose of arsenic (2 ppm for 24 hrs) caused fragmentation of DNA. To identify the molecular biomarkers of low-dose arsenic exposure, gene expression was also investigated with whole genome microarray. As results, 9,022 genes were up-regulated including heme oxygenase-l and glutathione S-transrerase, which are well-known biomarkers of oxidative stress. 9,404 genes were down-regulated including endothelial type gp 91-phox gene by the treatment of 0.1 ppm arsenic for 24 hours. This means that biological responses of cardiomyocytes may be altered by ROS induced by low level arsenic without cell death, and this alteration may be detected clearly by molecular biomarkers such as heme oxygenase-1.

Insilico profiling of microRNAs in Korean ginseng (Panax ginseng Meyer)

  • Mathiyalagan, Ramya;Subramaniyam, Sathiyamoorthy;Natarajan, Sathishkumar;Kim, Yeon Ju;Sun, Myung Suk;Kim, Se Young;Kim, Yu-Jin;Yang, Deok Chun
    • Journal of Ginseng Research
    • /
    • v.37 no.2
    • /
    • pp.227-247
    • /
    • 2013
  • MicroRNAs (miRNAs) are a class of recently discovered non-coding small RNA molecules, on average approximately 21 nucleotides in length, which underlie numerous important biological roles in gene regulation in various organisms. The miRNA database (release 18) has 18,226 miRNAs, which have been deposited from different species. Although miRNAs have been identified and validated in many plant species, no studies have been reported on discovering miRNAs in Panax ginseng Meyer, which is a traditionally known medicinal plant in oriental medicine, also known as Korean ginseng. It has triterpene ginseng saponins called ginsenosides, which are responsible for its various pharmacological activities. Predicting conserved miRNAs by homology-based analysis with available expressed sequence tag (EST) sequences can be powerful, if the species lacks whole genome sequence information. In this study by using the EST based computational approach, 69 conserved miRNAs belonging to 44 miRNA families were identified in Korean ginseng. The digital gene expression patterns of predicted conserved miRNAs were analyzed by deep sequencing using small RNA sequences of flower buds, leaves, and lateral roots. We have found that many of the identified miRNAs showed tissue specific expressions. Using the insilico method, 346 potential targets were identified for the predicted 69 conserved miRNAs by searching the ginseng EST database, and the predicted targets were mainly involved in secondary metabolic processes, responses to biotic and abiotic stress, and transcription regulator activities, as well as a variety of other metabolic processes.

An Outbreak of Gregarious Nymphs of Locusta migratoria (Orthoptera: Acrididae) in Korea and Their Genetic Lineage Based on mtDNA COI Sequences (한국에서 군집형 풀무치의 대발생과 그 집단의 유전적 계통)

  • Lee, Gwan Seok;Kim, Kwang Ho;Kim, Chang Seok;Lee, Wonhoon
    • Korean journal of applied entomology
    • /
    • v.55 no.4
    • /
    • pp.523-528
    • /
    • 2016
  • The migratory locust Locusta migratoria, one of the world's most notorious insect pests, has polyphenic (gregarious or solitarious) characteristics. Although this species is known to have several morphological variants, it is genetically divided into two different lineages using mitochondrial genome analysis: Southern (Africa, Southern Europe, Southern Asia, and Australia) and Northern (East Asia and the Eurasian continent). In 2014, a large number of orange black-colored gregarious L. migratoria nymphs suddenly appeared at Haenamgun, Jeollanamdo in the south of Korea. This is the first report of gregarious phase locusts occurring in Korea. In this study, mitochondrial COI sequences of one nymph and 11 adults of L. migratoria were analyzed to examine the genetic lineage of the gregarious nymphs of L. migratoria. Our results showed that all 12 individuals belong to the Northern linage and have low intraspecific genetic divergences (0.0% - 0.9%).

High Yield Saponin Production by Mass Cultures of Ginseng Transformed Tissue I. Induction, Culture of Transformed Tissue and Selection of High-Saponin-Producing Clones in Ginseng (인삼 형질전환 조직의 다량배양에 의한 Saponin 고 생산 I. 인삼에서 형질전환 조직의 유도, 배양과 Saponin 고 생산능주 선발)

  • 이정석;고경민
    • KSBB Journal
    • /
    • v.9 no.2
    • /
    • pp.157-164
    • /
    • 1994
  • Hairy root clones of Panax ginseng were established by selection of some hairy roots formed on the leaf, stem and root segments transformed with Agrobacterium rhizogenes strain $A_4$. The transformed roots grew well in MS medium under the dark condition. To confirm the transformation with Ri-T-DNA, dot blot hybridization and opine analysis were Performed. Among four hairy roots induced from different part of ginseng, the HB3 hairy roots were examined for selection of high-saponin-producing clones. Four clones isolated from HB3 hairy root cultures displayed various phenotypes characterized by growth and total saponin content. Maximum growth was obtained for cultures of HB3-10 clone and the content of total saponin was 0.55 wt%. However, higher amount of total saponin was obtained with HB3-2 clone cultures(0.74 wt%) in spite of lower growth. Dot blot hybridization confirmed the introduction of Ri-T-DNA in the plant genome. In the opine test, agropine and mannopine were detected from all hairy root clones.

  • PDF

Interaction between Smoking and the STAB2 Gene in the Severity of Rheumatoid Arthritis

  • Min, Jin-Young;Min, Kyoung-Bok;Sung, Joo-Hon;Cho, Sung-Il
    • Genomics & Informatics
    • /
    • v.7 no.1
    • /
    • pp.20-25
    • /
    • 2009
  • Rheumatoid arthritis (RA) is a chronic autoimmune disorder that is characterized by inflammation of the synovial tissue and deterioration of the joint and bone. A recent study reported a potential gene-environment interaction between HLA-DR and smoking. The present study investigated whether a specific gene was related to the association between smoking and the severity of RA (rheumatoid factor levels > 20 IU/ml). We used the resources of the NARAC family collection of GAW 15 databases, and 1139 subjects with RF>20 IU/ml were included in the current analysis. The linkage panel contained 5858 SNP markers, and 5744 SNPs passed quality control criteria. Linear regression analyses, using PLINK software and generalized estimating equation regression models, were used to test for associations between the SNPs and the severity of RA according to smoking groups. Two major findings were established. First, the severity of RA in smokers was associated with rs703618 (p=$6{\times}10^{-5}$), which lies in the intronic region of the stabilin 2 (STAB2) gene on chromosome 12. Second, there were significant differences in the levels of RF between 'ever smokers' and 'never smokers' according to the rs703618 genotype (G/G, A/G, A/A). We investigated whether a specific gene acts as a mediator between smoking and the severity of RA and found that the STAB2 gene could affect this relationship. Our finding indicates that smoking may mediate RA severity by affecting the expression level of a specific gene.