Browse > Article
http://dx.doi.org/10.4014/jmb.1006.06001

Comparison of the Genomes of Deinococcal Species Using Oligonucleotide Microarrays  

Jung, Sun-Wook (Radiation Research Division for Biotechnology, Korea Atomic Energy Research Institute)
Joe, Min-Ho (Radiation Research Division for Biotechnology, Korea Atomic Energy Research Institute)
Im, Seong-Hun (Radiation Research Division for Biotechnology, Korea Atomic Energy Research Institute)
Kim, Dong-Ho (Radiation Research Division for Biotechnology, Korea Atomic Energy Research Institute)
Lim, Sang-Yong (Radiation Research Division for Biotechnology, Korea Atomic Energy Research Institute)
Publication Information
Journal of Microbiology and Biotechnology / v.20, no.12, 2010 , pp. 1637-1646 More about this Journal
Abstract
The bacterium Deinococcus radiodurans is one of the most resistant organisms to ionizing radiation and other DNA-damaging agents. Although, at present, 30 Deinococcus species have been identified, the whole-genome sequences of most species remain unknown, with the exception of D. radiodurans (DRD), D. geothermalis, and D. deserti. In this study, comparative genomic hybridization (CGH) microarray analysis of three Deinococcus species, D. radiopugnans (DRP), D. proteolyticus (DPL), and D. radiophilus (DRPH), was performed using oligonucleotide arrays based on DRD. Approximately 28%, 14%, and 15% of 3,128 open reading frames (ORFs) of DRD were absent in the genomes of DRP, DPL, and DRPH, respectively. In addition, 162 DRD ORFs were absent in all three species. The absence of 17 randomly selected ORFs was confirmed by a Southern blot. Functional classification showed that the absent genes spanned a variety of functional categories: some genes involved in amino acid biosynthesis, cell envelope, cellular processes, central intermediary metabolism, and DNA metabolism were not present in any of the three deinococcal species tested. Finally, comparative genomic data showed that 120 genes were Deinococcus-specific, not the 230 reported previously. Specifically, ddrD, ddrO, and ddrH genes, previously identified as Deinococcus-specific, were not present in DRP, DPL, or DRPH, suggesting that only a portion of ddr genes are shared by all members of the genus Deinococcus.
Keywords
Deinococcus; comparative genomic hybridization (CGH) microarray; ddr;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Narumi, I., K. Satoh, S. Cui, T. Funayama, S. Kitayama, and H. Watanabe. 2004. PprA: A novel protein from Deinococcus radiodurans that stimulates DNA ligation. Mol. Microbiol. 54: 278-285.   DOI   ScienceOn
2 Nishida, H. and I. Narumi. 2002. Disruption analysis of DR1420 and/or DR1758 in the extremely radioresistant bacterium Deinococcus radiodurans. Microbiology 148: 2911-2914.
3 Norais, C., S. Chitteni-Pattu, E. A. Wood, R. B. Inman, and M. M. Cox. 2009. DdrB protein, an alternative Deinococcus radiodurans SSB induced by ionizing radiation. J. Biol. Chem. 284: 21402-21411.   DOI   ScienceOn
4 Kitayama, S., Harsojo, and A. Matsuyama. 1980. Sensitization of Micrococcus radiophilus to gamma-rays by postirradiation incubation with chloramphenicol or at nonpermissive temperature. J. Radiat. Res. 21: 257-262.   DOI   ScienceOn
5 Lloyd, R. G. and C. Buckman. 1991. Genetic analysis of the recG locus of Escherichia coli K-12 and of its role in recombination and DNA repair. J. Bacteriol. 173: 1004-1011.
6 Makarova, K. S., L. Aravind, M. J. Daly, and E. V. Koonin. 2000. Specific expansion of protein families in the radioresistant bacterium Deinococcus radiodurans. Genetica 108: 25-34.   DOI   ScienceOn
7 Makarova, K. S., L. Aravind, Y. I. Wolf, R. L. Tatusov, K. W. Minton, E. V. Koonin, and M. J. Daly. 2001. Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiol. Mol. Biol. Rev. 65: 44-79.   DOI   ScienceOn
8 Kalin, S. and J. Mrazek. 2001. Predicted highly expressed and putative alien genes of Deinococcus radiodurans and implication for resistance to ionizing radiation damage. Proc. Natl. Acad. Sci. USA 98: 5240-5245.   DOI   ScienceOn
9 Gutierrez-Preciado, A., R. A. Jensen, C. Yanofsky, and E. Merino. 2005. New insights into regulation of the tryptophan biosynthetic operon in Gram-positive bacteria. Trends Genet. 21: 432-436.   DOI   ScienceOn
10 Hua, Y., I. Narumi, G. Gao, B. Tain, and K. Satoh. 2003. PprI: A general switch responsible for extreme radioresistance of Deinococcus radiodurans. Biochem. Biophys. Res. Commun. 306: 354-360.   DOI   ScienceOn
11 Fukiya, S., H. Mizoguchi, T. Tobe, and H. Mori. 2004. Extensive genomic diversity in pathogenic Escherichia coli and Shigella strains revealed by comparative genomic hybridization microarray. J. Bacteriol. 186: 3911-3921.   DOI   ScienceOn
12 Bentchkou, E., P. Servant, G. Coste, and S. Sommer. 2010. A major role of the RecFOR pathway in DNA double-strandbreak repair through ESDSA in Deinococcus radiodurans. PLoS Genet. 6: e1000774.   DOI   ScienceOn
13 Goshal, D., M. V. Omelchenko, E. K. Gaidamakova, V. Y. Matrosova, A. Vasilenko, A. Venkateswaran, et al. 2005. How radiation kills cells: Survival of Denicoccus radiodurans and Shewanella oneidensis under oxidative stress. FEMS Microbiol. Rev. 29: 361-375.
14 Groot, A. D., R. Dulermo, P. Ortet, L. Blanchard, P. Guerin, B. Fernandez, et al. 2009. Alliance of proteomics and genomics to unravel the specificities of Sahara bacterium Deinococcus deserti. PLoS Genet. 5: e1000434.   DOI   ScienceOn
15 Fuhrer, T., L. Chen, U. Sauer, and D. Vitkup. 2007. Computational prediction and experimental verification of the gene encoding the $NAD^{+}/NADP^{+}$-dependent succinate semialdehyde dehydrogenase in Escherichia coli. J. Bacteriol. 189: 8073-8078.   DOI   ScienceOn
16 Cox, M. M. and J. R. Batistta. 2005. Deinococcus radiodurans - the consummate survivor. Nature 6: 882-892.
17 Earl, A. M., M. M. Mohundro, I. S. Mian, and J. R. Batistta. 2002. The IrrE protein of Deinococcus radiodurans R1 is a novel regulator of recA expression. J. Bacteriol. 184: 6216-6224.   DOI   ScienceOn
18 Eggington, J. M., N. Haruta, E. A. Wood, and M. M. Cox. 2004. The single-stranded DNA-binding protein of Deinococcus radiodurans. BMC Microbiol. 4: 2.   DOI   ScienceOn
19 Eppinger, M., C. Baar, G. Raddatz, D. H. Huson, and S. Schuster. 2004. Comparative analysis of four Campylobacteriales. Nature 2: 872-885.
20 Anderson, A. W., H. C. Nordan, R. F. Cain, G. Parrish, and D. Duggan. 1956. Studies on a radio-resistant Micrococcus. I. Isolation, morphology, cultural characteristics, and resistance to gamma radiation. Food Technol. 10: 575-578.
21 Rocha, E. P. C., E. Cornet, and B. Michel. 2005. Comparative and evolutionary analysis of the bacterial homologous recombination system. PLoS Genet. 1: e15.   DOI
22 Blasius, M., S. Sommer, and U. Hubcher. 2008. Deinococcus radiodurans: What belongs to the survival kit? Crit. Rev. Biochem. Mol. Biol. 43: 221-238.   DOI   ScienceOn
23 Wu, Y., W. Chen, Y. Zhao, H. Xu, and Y. Hua. 2009. Involvement of RecG in $H_{2}H_{2}$-induced damage repair in Deinococcus radiodurans. Can. J. Microbiol. 55: 841-848.   DOI   ScienceOn
24 Yang, Y. H., S. Dudoit, P. Luu, D. M. Lin, V. Peng, J. Ngal, and T. P. Speed. 2002. Normalization for cDNA microarray data: A robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res. 30: e15.   DOI   ScienceOn
25 Zharadka, K., D. Slade, A. Balione, S. Sommer, D. Averbeck, M. Petranovic, A. B. Lindner, and M. Radman. 2006. Reassembly of shattered chromosomes in Deinococcus radiodurans. Nature 443: 569-573.
26 White, O., J. A. Eisen, J. F. Heideberg, E. K. Hickey, J. D. Peterson, R. J. Dodson, et al. 1999. Genome sequence of the radioresistant bacterium Deinococcus radioduran R1. Science 286: 1571-1577.   DOI
27 Tanaka, M., A. M. Earl, H. A. Howell, M. J. Park, J. A. Eisen, S. N. Peterson, and J. R. Battista. 2004. Analysis of Deinococcus radiodurans's transcriptional response to ionizing radiation and desiccation reveals novel protein that contributes to extreme radioresistance. Genetics 168: 21-33.   DOI   ScienceOn
28 Udupa, K. S., P. A. O'Cain, V. Mattimore, and J. R. Battista. 1994. Novel ionizing radiation-sensitive mutants of Deinococcus radiodurans. J. Bacteriol. 24: 7439-7446.
29 Venkateswaren, A., S. C. Mcfarlan, D. Ghosal, K. W. Minton, A. Vasilenko, K. S. Makarova, L. P. Wackett, and M. J. Daly. 2000. Physiologic determinants of radation resistance in Deinococcus radiodurans. Appl. Environ. Microbiol. 66: 2620-2626.   DOI   ScienceOn
30 Rodin, S., A. F. Andersson, V. Wirta, L. Ericsson, M. Ljungstrom, B. Bjorkholm, H. Lindmark, and L. Engstrand. 2008. Performance of a 70-mer oligonucleotide microarray for genotyping of Campylobacter jejuni. BMC Microbiol. 8: 73.   DOI   ScienceOn
31 Slade, D., A. B. Lindner, G. Paul, and M. Radman. 2009. Recombination and replication in DNA repair of heavily irradiated Deinococcus radiodurans. Cell 136: 1044-1055.   DOI   ScienceOn
32 Makarova, K. S., M. V. Omenchenko, E. K. Gaidamakova, V. Y. Matrosova, A. Vasilenko, M. et al. 2007. Deinococcus geothermalis: The pool of extreme radiation resistance genes shrinks. PLoS ONE 9: e955.
33 Prell, J., A. Bourdes, R. Karunakaran, M. Lopez-Gomez, and P. Poole. 2009. Pathway of $\gamma$-aminobutyrate metabolism in Rhizobium leguminosarum 3841 and its roles in symbiosis. J. Bacteriol. 191: 2177-2186.   DOI   ScienceOn
34 Omelchenko, M. V., Y. I. Wolf, E. Gaidamakova, V. T. MAtrosova, A. Vasilenko, M. Zhai, M. J. Daly, E. V. Koonin, and K. S. Makarova. 2005. Comparative genomics of Thermus thermophilus and Deinococcus radiodurans: Divergent routes of adaptation to thermophily and radiation resistance. BMC Evol. Biol. 5: 57.   DOI   ScienceOn
35 Parker, C. T., B. Quinones, W. G. Miller, S. T. Horn, and R. E. Mandrell. 2006. Comparative genome analysis of Campylobacter jejuni strains reveals diversity due to genomic elements similar to those present in C. jejuni strain RM1221. J. Clin. Microbiol. 44: 4125-4135.   DOI   ScienceOn