• Title/Summary/Keyword: Genetic-Algorithm

Search Result 4,780, Processing Time 0.031 seconds

Multi-objective optimization of stormwater pipe networks and on-line stormwater treatment devices in an ultra-urban setting

  • Kim, Jin Hwi;Lee, Dong Hoon;Kang, Joo-Hyon
    • Membrane and Water Treatment
    • /
    • v.10 no.1
    • /
    • pp.75-82
    • /
    • 2019
  • In a highly urbanized area, land availability is limited for the installation of space consuming stormwater systems for best management practices (BMPs), leading to the consideration of underground stormwater treatment devices connected to the stormwater pipe system. The configuration of a stormwater pipe network determines the hydrological and pollutant transport characteristics of the stormwater discharged through the pipe network, and thus should be an important design consideration for effective management of stormwater quantity and quality. This article presents a multi-objective optimization approach for designing a stormwater pipe network with on-line stormwater treatment devices to achieve an optimal trade-off between the total installation cost and the annual removal efficiency of total suspended solids (TSS). The Non-dominated Sorted Genetic Algorithm-II (NSGA-II) was adapted to solve the multi-objective optimization problem. The study site used to demonstrate the developed approach was a commercial area that has an existing pipe network with eight outfalls into an adjacent stream in Yongin City, South Korea. The stormwater management model (SWMM) was calibrated based on the data obtained from a subcatchment within the study area and was further used to simulate the flow rates and TSS discharge rates through a given pipe network for the entire study area. In the simulation, an underground stormwater treatment device was assumed to be installed at each outfall and sized proportional to the average flow rate at the outfall. The total installation cost for the pipes and underground devices was estimated based on empirical formulas using the flow rates and TSS discharge rates simulated by the SWMM. In the demonstration example, the installation cost could be reduced by up to 9% while the annual TSS removal efficiency could be increased by 4% compared to the original pipe network configuration. The annual TSS removal efficiency was relatively insensitive to the total installation cost in the Pareto-optimal solutions of the pipe network design. The results suggested that the installation cost of the pipes and stormwater treatment devices can be substantially reduced without significantly compromising the pollutant removal efficiency when the pipe network is optimally designed.

Optimum Design of a Wind Power Tower to Augment Performance of Vertical Axis Wind Turbine (수직축 풍력터빈 성능향상을 위한 풍력타워 최적설계에 관한 연구)

  • Cho, Soo-Yong;Rim, Chae Hwan;Cho, Chong-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.3
    • /
    • pp.177-186
    • /
    • 2019
  • Wind power tower has been used to augment the performance of VAWT (Vertical Axis Wind Turbine). However, inappropriately designed wind power tower could reduce the performance of VAWT. Hence, an optimization study was conducted on a wind power tower. Six design variables were selected, such as the outer radius and the inner radius of the guide wall, the adoption of the splitter, the inner radius of the splitter, the number of the guide wall and the circumferential angle. For the objective function, the periodic averaged torque obtained at the VAWT was selected. In the optimization, Design of Experiment (DOE), Genetic Algorithm (GA), and Artificial Neural Network (ANN) have been applied in order to avoid a localized optimized result. The ANN has been continuously improved after finishing the optimization process at each generation. The performance of the VAWT was improved more than twice when it operated within the optimized wind power tower compared to that obtained at a standalone.

An Application of Support Vector Machines to Personal Credit Scoring: Focusing on Financial Institutions in China (Support Vector Machines을 이용한 개인신용평가 : 중국 금융기관을 중심으로)

  • Ding, Xuan-Ze;Lee, Young-Chan
    • Journal of Industrial Convergence
    • /
    • v.16 no.4
    • /
    • pp.33-46
    • /
    • 2018
  • Personal credit scoring is an effective tool for banks to properly guide decision profitably on granting loans. Recently, many classification algorithms and models are used in personal credit scoring. Personal credit scoring technology is usually divided into statistical method and non-statistical method. Statistical method includes linear regression, discriminate analysis, logistic regression, and decision tree, etc. Non-statistical method includes linear programming, neural network, genetic algorithm and support vector machine, etc. But for the development of the credit scoring model, there is no consistent conclusion to be drawn regarding which method is the best. In this paper, we will compare the performance of the most common scoring techniques such as logistic regression, neural network, and support vector machines using personal credit data of the financial institution in China. Specifically, we build three models respectively, classify the customers and compare analysis results. According to the results, support vector machine has better performance than logistic regression and neural networks.

A design of a Vehicle Analysis System using cloud and data mining (클라우드와 데이터 마이닝을 이용한 차량 분석 시스템 설계)

  • Jeong, Yi-Na;Son, Su-rak;Kim, Kyung-Deuk;Lee, Byung-Kwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.238-241
    • /
    • 2019
  • In this paper, a "Vehicle Analysis System(VAS) using cloud and data mining" is proposed that store all the sensor data measured in the vehicle in the cloud, analyze the stored data using the classification model, and provide the analyzed data in real time to the driver's display. The VAS consists of two modules. First, Sensor Data Communication Module(SDCM) stores the sensor data measured in the vehicle in a table of the cloud server and transfers the stored data to the analysis module. Second, Sensor Data Analysis Module(SDAM) analyzes the received data using the genetic algorithm and provides analyzed result to the driver in real time. The VAS stores sensor data collected in the vehicle in the cloud server without accumulating it in the vehicle, and stored data is analyzed in the cloud server, so that the sensor data can be quickly and efficiently managed without overloading the vehicle. In addition, the information desired by the driver can be visualized on the display, thereby increasing the stability of the autonomous vehicle.

  • PDF

Comparison of Recombination Methods ad Cooling Factors in Genetic Algorithms Applied to Folding of Protein Model System

  • U, Su Hyeong;Kim, Du Il;Jeong, Seon Hui
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.3
    • /
    • pp.281-290
    • /
    • 2000
  • We varied recombination method of fenetic algorithm (GA), i.e., crossover step, to compare efficiency of these methods, and to find more optimum GA method. In one method (A), we select two conformations(parents) to be recombined by systematic combination of lowest energy conformations, and in the other (B), we select them in a ratio proportional to the energy of the conformation. Second variation lies in how to select crossover point. First, we select it randomly(1). Second, we select range of residues where internal energy of the molecule does not vary for more than two residues, select randomly among such regions, and we select either thr first (2a) or the second residue (2b) from the N-terminal side, or the first (2c) or the second residue (2d) from the C-terminal side in the selected region for crossover point. Third, we select longest such hregion, and select such residue(as cases 2) (3a, 3b, 3c or 3d) of the region. These methods were tested in a 2-dimensionl lattice system for 8 different sequences (the same ones used by Unger and Moult., 1993). Results show that compared to Unger and Moult's result(UM) which corresponds to B-1 case, our B-1 case performed similarly in overall. There are many cases where our new methods performed better than UM for some different sequences. When cooling factor affecting higher energy conformation to be accepted in Monte Carlo step was reduced, our B-1 and other cases performed better than UM; we found lower energy conformers, and found same energy conformers in a smaller steps. We discuss importance of cooling factor variation in Monte Carlo simulations of protein folding for different proteins. (A) method tends to find the minimum conformer faster than (B) method, and (3) method is superior or at least equal to (1) method.

A Study on Optimal PID Controller Design Ensure the Absolute Stability (절대안정도를 보장하는 최적 PID 제어기 설계에 관한 연구)

  • Cho, Joon-Ho
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.2
    • /
    • pp.124-129
    • /
    • 2021
  • In this paper, an optimal controller design that guarantees absolute stability is proposed. The order of application of the thesis determines whether the delay time is included, and if the delay time is included, the delay time is approximated through the Pade approximation method. Then, the open loop transfer function for the process model and the controller transfer function is obtained, and the absolute stability interval is calculated by the Routh-Hurwitz discrimination method. In the last step, the optimal Proportional and Integral and Derivative(PID) control parameter value is calculated using a genetic algorithm using the interval obtained in the previous step. As a result, it was confirmed that the proposed method guarantees stability and is superior to the existing method in performance index by designing an optimal controller. If we study the compensation method for the delay time in the future, it is judged that better performance indicators will be obtained.

Feature Analysis of Ultrasonic Signals for Diagnosis of Welding Faults in Tubular Steel Tower (관형 철탑 용접 결함 진단을 위한 초음파 신호의 특징 분석)

  • Min, Tae-Hong;Yu, Hyeon-Tak;Kim, Hyeong-Jin;Choi, Byeong-Keun;Kim, Hyun-Sik;Lee, Gi-Seung;Kang, Seog-Geun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.4
    • /
    • pp.515-522
    • /
    • 2021
  • In this paper, we present and analyze a method of applying a machine learning to ultrasonic test signals for constant monitoring of the welding faults in a tubular steel tower. For the machine learning, feature selection based on genetic algorithm and fault signal classification using a support vector machine have been used. In the feature selection, the peak value, histogram lower bound, and normal negative log-likelihood from 30 features are selected. Those features clearly indicate the difference of signals according to the depth of faults. In addition, as a result of applying the selected features to the support vector machine, it has been possible to perfectly distinguish between the regions with and without faults. Hence, it is expected that the results of this study will be useful in the development of an early detection system for fault growth based on ultrasonic signals and in the energy transmission related industries in the future.

A Study on Soil Moisture Estimates Performance Using Various Land Surface Models (다양한 지표모형을 활용한 토양수분 예측 성능 평가 연구)

  • Jang, Ye-Geun;Sin, Seoung-Hun;Lee, Tae-Hwa;Jang, Won-Seok;Shin, Yong-Chul;Jang, Keun-Chang;Chun, Jung-Hwa;Kim, Jong-Gun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.1
    • /
    • pp.79-89
    • /
    • 2022
  • Soil moisture is significantly related to crop growth and plays an important role in irrigation management. To predict soil moisture, various process-based model has been developed and used in the world. Various models (Land surface model) may have different performance depending on the model parameters and structures that causes the different model output for the same modeling condition. In this study, the three land surface models (Noah Land Surface Model, Soil Water Atmosphere Plant, Community Land Model) were used to compare the model performance (soil moisture prediction) and develop the multi-model simulation. At first, the genetic algorithm was used to estimate the optimal soil parameters for each model, and the parameters were used to predict soil moisture in the study area. Then, we used the multi-model approach based on Bayesian model averaging (BMA). The results derived from this approach showed a better match to the measurements than the results from the original single land surface model. In addition, identifying the strengths and weaknesses of the single model and utilizing multi-model methods can help to increase the accuracy of soil moisture prediction.

Data-Based Model Approach to Predict Internal Air Temperature in a Mechanically-Ventilated Broiler House (데이터 기반 모델에 의한 강제환기식 육계사 내 기온 변화 예측)

  • Choi, Lak-yeong;Chae, Yeonghyun;Lee, Se-yeon;Park, Jinseon;Hong, Se-woon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.5
    • /
    • pp.27-39
    • /
    • 2022
  • The smart farm is recognized as a solution for future farmers having positive effects on the sustainability of the poultry industry. Intelligent microclimate control can be a key technology for broiler production which is extremely vulnerable to abnormal indoor air temperatures. Furthermore, better control of indoor microclimate can be achieved by accurate prediction of indoor air temperature. This study developed predictive models for internal air temperature in a mechanically-ventilated broiler house based on the data measured during three rearing periods, which were different in seasonal climate and ventilation operation. Three machine learning models and a mechanistic model based on thermal energy balance were used for the prediction. The results indicated that the all models gave good predictions for 1-minute future air temperature showing the coefficient of determination greater than 0.99 and the root-mean-square-error smaller than 0.306℃. However, for 1-hour future air temperature, only the mechanistic model showed good accuracy with the coefficient of determination of 0.934 and the root-mean-square-error of 0.841℃. Since the mechanistic model was based on the mathematical descriptions of the heat transfer processes that occurred in the broiler house, it showed better prediction performances compared to the black-box machine learning models. Therefore, it was proven to be useful for intelligent microclimate control which would be developed in future studies.

Development of a decision scaling framework for drought vulnerability assessment of dam operation under climate change (Decision Scaling 기반 댐 운영 기후변화 가뭄 취약성 평가)

  • Kim, Jiheun;Seo, Seung Beom;Cho, Jaepil
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.4
    • /
    • pp.273-284
    • /
    • 2023
  • Water supply is continuously suffering from frequent droughts under climate change, and such extreme events are expected to become more frequent due to climate change. In this study, the decision scaling method was introduced to evaluate the drought vulnerability under future climate change in a wider range. As a result, the water supply reliability of the Boryeong Dam ranged from 95.80% to 98.13% to the condition of the aqueduct which was constructed at the Boryeong Dam. Furthermore, the Boryeong Dam was discovered to be vulnerable under climate change scenarios. Hence, genetic algorithm-based hedging rules were developed to evaluate the reduction effect of drought vulnerability. Moreover, three demand scenarios (high, standard, and low demand) were also considered to reflect the future socio-economic change in the Boryeong Dam. By analyzing quantitative reliability and the probability of extreme drought occurrence under 5% of the water storage rate, all hedging rules demonstrated that they were superior in preparing for extreme drought under low-demand scenarios.