• 제목/요약/키워드: Genetic operators

검색결과 209건 처리시간 0.032초

PC 클러스터 기반 병렬 유전 알고리즘-타부 탐색을 이용한 배전계통 고장 복구 (PC Cluster Based Parallel Genetic Algorithm-Tabu Search for Service Restoration of Distribution Systems)

  • 문경준;이화석;박준호;김형수
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제54권8호
    • /
    • pp.375-387
    • /
    • 2005
  • This paper presents an application of parallel Genetic Algorithm-Tabu Search (GA-TS) algorithm to search an optimal solution of a service restoration in distribution systems. The main objective of service restoration of distribution systems is, when a fault or overload occurs, to restore as much load as possible by transferring the do-energized load in the out of service area via network reconfiguration to the appropriate adjacent feeders at minimum operational cost without violating operating constraints, which is a combinatorial optimization problem. This problem has many constraints with many local minima to solve the optimal switch position. This paper develops parallel GA-TS algorithm for service restoration of distribution systems. In parallel GA-TS, GA operators are executed for each processor. To prevent solutions of low fitness from appearing in the next generation, strings below the average fitness are saved in the tabu list. If best fitness of the GA is not changed for several generations, TS operators are executed for the upper $10\%$ of the population to enhance the local searching capabilities. With migration operation, best string of each node is transferred to the neighboring node after predetermined iterations are executed. For parallel computing, we developed a PC cluster system consists of 8 PCs. Each PC employs the 2 GHz Pentium IV CPU and is connected with others through ethernet switch based fast ethernet. To show the validity of the proposed method, proposed algorithm has been tested with a practical distribution system in Korea. From the simulation results, we can find that the proposed algorithm is efficient for the distribution system service restoration in terms of the solution quality, speedup, efficiency and computation time.

배전계통 최적 재구성 문제에 PC 클러스터 시스템을 이용한 병렬 유전 알고리즘-타부 탐색법 구현 (Parallel Genetic Algorithm-Tabu Search Using PC Cluster System for Optimal Reconfiguration of Distribution Systems)

  • 문경준;송명기;김형수;김철홍;박준호;이화석
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제53권10호
    • /
    • pp.556-564
    • /
    • 2004
  • This paper presents an application of parallel Genetic Algorithm-Tabu Search(GA-TS) algorithm to search an optimal solution of a reconfiguration in distribution system. The aim of the reconfiguration of distribution systems is to determine switch position to be opened for loss minimization in the radial distribution systems, which is a discrete optimization problem. This problem has many constraints and very difficult to solve the optimal switch position because it has many local minima. This paper develops parallel GA-TS algorithm for reconfiguration of distribution systems. In parallel GA-TS, GA operators are executed for each processor. To prevent solution of low fitness from appearing in the next generation, strings below the average fitness are saved in the tabu list. If best fitness of the GA is not changed for several generations, TS operators are executed for the upper 10% of the population to enhance the local searching capabilities. With migration operation, best string of each node is transferred to the neighboring node aster predetermined iterations are executed. For parallel computing, we developed a PC-cluster system consisting of 8 PCs. Each PC employs the 2 GHz Pentium Ⅳ CPU and is connected with others through ethernet switch based fast ethernet. To show the usefulness of the proposed method, developed algorithm has been tested and compared on a distribution systems in the reference paper. From the simulation results, we can find that the proposed algorithm is efficient and robust for the reconfiguration of distribution system in terms of the solution qualify. speedup. efficiency and computation time.

Parallel Genetic Algorithm-Tabu Search Using PC Cluster System for Optimal Reconfiguration of Distribution Systems

  • Mun Kyeong-Jun;Lee Hwa-Seok;Park June-Ho
    • KIEE International Transactions on Power Engineering
    • /
    • 제5A권2호
    • /
    • pp.116-124
    • /
    • 2005
  • This paper presents an application of the parallel Genetic Algorithm-Tabu Search (GA- TS) algorithm, and that is to search for an optimal solution of a reconfiguration in distribution systems. The aim of the reconfiguration of distribution systems is to determine the appropriate switch position to be opened for loss minimization in radial distribution systems, which is a discrete optimization problem. This problem has many constraints and it is very difficult to solve the optimal switch position because of its numerous local minima. This paper develops a parallel GA- TS algorithm for the reconfiguration of distribution systems. In parallel GA-TS, GA operators are executed for each processor. To prevent solution of low fitness from appearing in the next generation, strings below the average fitness are saved in the tabu list. If best fitness of the GA is not changed for several generations, TS operators are executed for the upper 10$\%$ of the population to enhance the local searching capabilities. With migration operation, the best string of each node is transferred to the neighboring node after predetermined iterations are executed. For parallel computing, we developed a PC-cluster system consisting of 8 PCs. Each PC employs the 2 GHz Pentium IV CPU and is connected with others through switch based rapid Ethernet. To demonstrate the usefulness of the proposed method, the developed algorithm was tested and is compared to a distribution system in the reference paper From the simulation results, we can find that the proposed algorithm is efficient and robust for the reconfiguration of distribution system in terms of the solution quality, speedup, efficiency, and computation time.

Flux Optimization Using Genetic Algorithms in Membrane Bioreactor

  • Kim Jung-Mo;Park Chul-Hwan;Kim Seung-Wook;Kim Sang-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권6호
    • /
    • pp.863-869
    • /
    • 2006
  • The behavior of submerged membrane bioreactor (SMBR) filtration systems utilizing rapid air backpulsing as a cleaning technique to remove reversible foulants was investigated using a genetic algorithm (GA). A customized genetic algorithm with suitable genetic operators was used to generate optimal time profiles. From experiments utilizing short and long periods of forward and reverse filtration, various experimental process parameters were determined. The GA indicated that the optimal values for the net flux fell between 263-270 LMH when the forward filtration time ($t_f$) was 30-37 s and the backward filtration time ($t_b$) was 0.19-0.27 s. The experimental data confirmed the optimal backpulse duration and frequency that maximized the net flux, which represented a four-fold improvement in 24-h backpulsing experiments compared with the absence of backpulsing. Consequently, the identification of a region of feasible parameters and nonlinear flux optimization were both successfully performed by the genetic algorithm, meaning the genetic algorithm-based optimization proved to be useful for solving SMBR flux optimization problems.

유전자 알고리즘을 이용한 확장성 있고 빠른 경로 재탐색 알고리즘 (Fast and Scalable Path Re-routing Algorithm Using A Genetic Algorithm)

  • 이정규;김선호;양지훈
    • 정보처리학회논문지B
    • /
    • 제18B권3호
    • /
    • pp.157-164
    • /
    • 2011
  • 본 논문은 유전자 알고리즘을 이용해서 동적으로 변하는 네트워크상에서 빠르게 최단 경로를 재탐색할 수 있는 알고리즘을 제안한다. 제안 알고리즘은 다익스트라 알고리즘과 유전자 알고리즘을 통합한 형식의 알고리즘이다. 이 제안 알고리즘은 최초 탐색 시 다익스트라(Dijkstra) 알고리즘을 이용해서 유전자 알고리즘의 초기화 과정을 용이하게 하는 선행자 배열을 정의한다. 그 후 유전자 알고리즘은 적절한 유전 연산자를 통해 동적으로 변하는 트래픽 상황에서 최적의 경로를 재탐색한다. 실험 결과를 통해 제안 알고리즘이 거대한 네트워크 데이터에 대해서 다른 유전자 알고리즘 기반의 최단경로 찾기 알고리즘이나 다익스트라 알고리즘보다 적은 계산시간으로 더 짧은 주행시간의 경로를 제시한다는 것을 보였다.

진화 프로그램을 이용한 효율적인 대체경로 탐색방법 연구 (Using Evolution Program to Develop Effective Search Method for Alternative Routes)

  • CHOI, Gyoo Seok;SEO, Ki Sung;PARK, Jong Jin
    • 대한교통학회지
    • /
    • 제20권2호
    • /
    • pp.71-79
    • /
    • 2002
  • 도시 내 교통혼잡이 증가됨에 따라 최단경로 탐색방법뿐만이 아니라 동일 목적지까지의 여러 가지 경로(준 최단경로)를 제시해 줌으로써 교통량을 효과적으로 분산시킬 수 있는 대체경로 탐색기법에 대한 관심이 고조되고 있다. 본 논문에서는 대체 경로의 유효성을 평가하는 성능지표를 제안하고, 복수개의 우수해 탐색에 유리한 진화 프로그램에 기초한 효과적인 대체경로 탐색기법을 제시한다. 기존 방법(k-th 최단경로 방법)의 문제점이었던 대체 경로들간의 유사성이 제안된 방법에서는 해결된다. 가상 도로망을 통한 컴퓨터 시뮬레이션의 결과로서 제안된 방법이 기존 방법보다 교통량 분산(경로들간의 상이성)측면에서 훨씬 더 우수함을 확인하였다.

유전자 알고리즘을 위한 지역적 미세 조정 메카니즘 (Genetic Algorithm with the Local Fine-Tuning Mechanism)

  • 임영희
    • 인지과학
    • /
    • 제4권2호
    • /
    • pp.181-200
    • /
    • 1994
  • 다층 신경망의 학습에 있어서 역전파 알고리즘은 시스템이 지역적 최소치에 빠질수 있고,탐색공간의 피라미터들에 의해 신경망 시스템의 성능이 크게 좌우된다는 단점이 있다.이러한 단점을 보완하기 의해 유전자 알고리즘이 신경망의 학습에 도입도었다.그러나 유전자 알고리즘에는 역전파 알고리즘과 같은 미세 조정되는 지역적 탐색(fine-tuned local search) 을 위한 메카니즘이 존재하지 않으므로 시스템이 전역적 최적해로 수렴하는데 많은 시간을 필요로 한다는 단점이 있다. 따라서 본 논문에서는 역전파 알고리즘의 기울기 강하 기법(gradient descent method)을 교배나 돌연변이와 같은 유전 연산자로 둠으로써 유전자 알고리즘에 지역적 미세 조정(local fine-tuning)을 위한 메카니즘을 제공해주는 새로운 형태의 GA-BP 방법을 제안한다.제안된 방법의 유용성을 보이기 위해 3-패러티 비트(3-parity bit) 문제에 실험하였다.

Shipyard Skid Sequence Optimization Using a Hybrid Genetic Algorithm

  • Min-Jae Choi;Yung-Keun Kwon
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권12호
    • /
    • pp.79-87
    • /
    • 2023
  • 본 연구는 조선소 소조립 공정에서 스키드 투입 순서 최적화를 통해 전체 작업시간을 단축시키는 새로운 유전 알고리즘 방법을 제안한다. 하나의 해는 스키드 번호들의 순열로 표현되며 그러한 표현에 적합한 유전 연산자들을 적용하였다. 또한 탐색 성능의 개선을 위해 UniDev라 불리우는 기존의 휴리스틱 알고리즘을 적절하게 변형하여 유전 알고리즘과 결합하였다. 특히 UniDev에서 느린 스키드 탐색 부분을 그리디 알고리즘의 형태로 변경하였다. 매우 큰 규모의 문제에 대해 시뮬레이션을 수행한 결과 Multi-Start 탐색과 UniDev기반 혼합형 유전알고리즘에 비해 본 연구에서 제안하는 방법이 안정적으로 작업시간을 최소화함을 관찰하였다.

A study of selection operator using distance information between individuals in genetic algorithm

  • Ito, Minoru;Sugisaka, Masanori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1521-1524
    • /
    • 2003
  • In this paper, we propose a "Distance Correlation Selection operator (DCS)" as a new selection operator. For Genetic Algorithm (GA), many improvements have been proposed. The MGG (Minimal Generation Gap) model proposed by Satoh et.al. shows good performance. The MGG model has all advantages of conventional models and the ability of avoiding the premature convergence and suppressing the evolutionary stagnation. The proposed method is an extension of selection operator in the original MGG model. Generally, GA has two types of selection operators, one is "selection for reproduction", and the other is "selection for survival"; the former is for crossover and the latter is the individuals which survive to the next generation. The proposed method is an extension of the former. The proposed method utilizes distance information between individuals. From this extension, the proposed method aims to expand a search area and improve ability to search solution. The performance of the proposed method is examined with several standard test functions. The experimental results show good performance better than the original MGG model.

  • PDF

유전적 알고리듬을 적용하여 머시닝센터 베드두께의 동하중을 고려한 최적설계에 관한 연구 (A Study on the design Optimization of Thickness of Machiningcenter Bed under Dynamic Loading by using Genetic Algorithm)

  • 조백희
    • 한국생산제조학회지
    • /
    • 제8권1호
    • /
    • pp.67-73
    • /
    • 1999
  • This paper presents resizing design optimization method by utilizing genetic algorithm(GA), which consists of three basic operators : reproduction, crossover and mutation. The fitness and penalty function for resizing optimization problem are defined, and the flowchart of the developed computer program along with the descriptions of each modules is presented. Also, modelling for flexible-body dynamic analysis is presented. The model is composed of bodies, joints, and force elements such as translational spring-damper-actuator. The design objects si to determine the wall thickness for minimum weight under dynamic displacement constraint.

  • PDF