• 제목/요약/키워드: Genetic network

검색결과 1,144건 처리시간 0.028초

전기.유압 서보시스템의 수정된 신경망-유전자 알고리즘에 의한 파라미터 식별 (Parameter Identification of an Electro-Hydraulic Servo System Using a Modified Hybrid Neural-Genetic Algorithm)

  • 곽동훈;이춘태;정봉호;이진걸
    • 제어로봇시스템학회논문지
    • /
    • 제9권6호
    • /
    • pp.442-447
    • /
    • 2003
  • This paper demonstrates that a modified hybrid neural-genetic multimodel parameter estimation algorithm can be applied to structured system identification of an electro-hydraulic servo system. This algorithm is consists of a recurrent incremental credit assignment(ICRA) neural network and a genetic algorithm. The ICRA neural network evaluates each member of a generation of model and genetic algorithm produces new generation of model. The modified hybrid neural-genetic multimodel parameter estimation algorithm is applied to an electro-hydraulic servo system the task to find the parameter values such as mass, damping coefficient, bulk modulus, spring coefficient and disturbance, which minimizes the total square error.

개선된 신경망-유전자 다중모델에 의한 전기.유압 서보시스템의 파라미터 식별 (Parameter Identification of an Electro-Hydraulic Servo System Using an Improved Hybrid Neural-Genetic Multimodel Algorithm)

  • 곽동훈;정봉호;이춘태;이진걸
    • 한국정밀공학회지
    • /
    • 제20권5호
    • /
    • pp.196-203
    • /
    • 2003
  • This paper demonstrates that an improved hybrid neural-genetic multimodel parameter estimation algorithm can be applied to the structured system identification of an electro-hydraulic servo system. This algorithm is consists of a recurrent incremental credit assignment (ICRA) neural network and a genetic algorithm, The ICRA neural network evaluates each member of a generation of model and the genetic algorithm produces new generation of model. We manufactured an electro-hydraulic servo system and the improved hybrid neural-genetic multimodel parameter estimation algorithm is applied to the task to find the parameter values, such as mass, damping coefficient, bulk modulus, spring coefficient and disturbance, which minimize total square error.

뉴로 유전자 결합모형을 이용한 상수도 1일 급수량 예측 (Prediction of Daily Water Supply Using Neuro Genetic Hybrid Model)

  • 이경훈;강일환;문병석;박진금
    • 환경영향평가
    • /
    • 제14권4호
    • /
    • pp.157-164
    • /
    • 2005
  • Existing models that predict of Daily water supply include statistical models and neural network model. The neural network model was more effective than the statistical models. Only neural network model, which predict of Daily water supply, is focused on estimation of the operational control. Neural network model takes long learning time and gets into local minimum. This study proposes Neuro Genetic hybrid model which a combination of genetic algorithm and neural network. Hybrid model makes up for neural network's shortcomings. In this study, the amount of supply, the mean temperature and the population of the area supplied with water are use for neural network's learning patterns for prediction. RMSE(Root Mean Square Error) is used for a MOE(Measure Of Effectiveness). The comparison of the two models showed that the predicting capability of Hybrid model is more effective than that of neural network model. The proposed hybrid model is able to predict of Daily water, thus it can apply real time estimation of operational control of water works and water drain pipes. Proposed models include accidental cases such as a suspension of water supply. The maximum error rate between the estimation of the model and the actual measurement was 11.81% and the average error was lower than 1.76%. The model is expected to be a real-time estimation of the operational control of water works and water/drain pipes.

개선된 유전자 역전파 신경망에 기반한 예측 알고리즘 (Forecasting algorithm using an improved genetic algorithm based on backpropagation neural network model)

  • 윤여창;조나래;이성덕
    • Journal of the Korean Data and Information Science Society
    • /
    • 제28권6호
    • /
    • pp.1327-1336
    • /
    • 2017
  • 본 연구에서는 단기 예측을 위한 자기회귀누적이동평균모형, 역전파 신경망 및 유전자 알고리즘의 결합 적용에 대하여 논의하고 이를 통한 유전자-신경망 알고리즘의 효용성을 살펴본다. 일반적으로 역전파 알고리즘은 지역 최소값에 수렴될 수 있는 단점이 있기 때문에, 여기서는 예측 정확도를 높이기 위해 역전파 신경망 구조를 최적화하고 유전자 알고리즘을 결합한 유전자-신경망 알고리즘 기반 예측모형을 구축한다. 실험을 통한 오차 비교는 KOSPI 지수를 이용한다. 결과는 이 연구에서 제안된 유전자-신경망 모형이 역전파 신경망 모형과 비교할 때 예측 정확도에서 어느 정도 유의한 효율성을 보여주고자 한다.

Pathway enrichment and protein interaction network analysis for milk yield, fat yield and age at first calving in a Thai multibreed dairy population

  • Laodim, Thawee;Elzo, Mauricio A.;Koonawootrittriron, Skorn;Suwanasopee, Thanathip;Jattawa, Danai
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권4호
    • /
    • pp.508-518
    • /
    • 2019
  • Objective: This research aimed to determine biological pathways and protein-protein interaction (PPI) networks for 305-d milk yield (MY), 305-d fat yield (FY), and age at first calving (AFC) in the Thai multibreed dairy population. Methods: Genotypic information contained 75,776 imputed and actual single nucleotide polymorphisms (SNP) from 2,661 animals. Single-step genomic best linear unbiased predictions were utilized to estimate SNP genetic variances for MY, FY, and AFC. Fixed effects included herd-year-season, breed regression and heterosis regression effects. Random effects were animal additive genetic and residual. Individual SNP explaining at least 0.001% of the genetic variance for each trait were used to identify nearby genes in the National Center for Biotechnology Information database. Pathway enrichment analysis was performed. The PPI of genes were identified and visualized of the PPI network. Results: Identified genes were involved in 16 enriched pathways related to MY, FY, and AFC. Most genes had two or more connections with other genes in the PPI network. Genes associated with MY, FY, and AFC based on the biological pathways and PPI were primarily involved in cellular processes. The percent of the genetic variance explained by genes in enriched pathways (303) was 2.63% for MY, 2.59% for FY, and 2.49% for AFC. Genes in the PPI network (265) explained 2.28% of the genetic variance for MY, 2.26% for FY, and 2.12% for AFC. Conclusion: These sets of SNP associated with genes in the set enriched pathways and the PPI network could be used as genomic selection targets in the Thai multibreed dairy population. This study should be continued both in this and other populations subject to a variety of environmental conditions because predicted SNP values will likely differ across populations subject to different environmental conditions and changes over time.

인공신경망 학습단계에서의 Genetic Algorithm을 이용한 입력변수 선정 (Input variables selection using genetic algorithm in training an artificial neural network)

  • 이재식;차봉근
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 1996년도 추계학술대회발표논문집; 고려대학교, 서울; 26 Oct. 1996
    • /
    • pp.27-30
    • /
    • 1996
  • Determination of input variables for artificial neural network (ANN) depends entirely on the judgement of a modeller. As the number of input variables increases, the training time for the resulting ANN increases exponentially. Moreover, larger number of input variables does not guarantee better performance. In this research, we employ Genetic Algorithm for selecting proper input variables that yield the best performance in training the resulting ANN.

  • PDF

Evolution of the Behavioral Knowledge for a Virtual Robot

  • Hwang Su-Chul;Cho Kyung-Dal
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제5권4호
    • /
    • pp.302-309
    • /
    • 2005
  • We have studied a model and application that evolves the behavioral knowledge of a virtual robot. The knowledge is represented in classification rules and a neural network, and is learned by a genetic algorithm. The model consists of a virtual robot with behavior knowledge, an environment that it moves in, and an evolution performer that includes a genetic algorithm. We have also applied our model to an environment where the robots gather food into a nest. When comparing our model with the conventional method on various test cases, our model showed superior overall learning.

진화 신경망을 이용한 도립진자 시스템의 안정화 제어기에 관한 연구 (A Study on the Stabilization Control of IP System Using Evolving Neural Network)

  • 박영식;이준탁;심영진
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제25권2호
    • /
    • pp.383-394
    • /
    • 2001
  • The stabilization control of inverted pendulum (IP) system is difficult because of its nonlinearity and structural unstability. In this paper, an Evolving Neural Network Controller (ENNC) without Error Back Propagation (EBP) is presented. An ENNC is described simply by genetic representation using an encoding strategy for types and slope values of each active functions, biases, weights and so on. By an evolutionary programming which has three genetic operation; selection, crossover and mutation, the predetermine controller is optimally evolved by updating simultaneously the connection patterns and weights of the neural networks. The performances of the proposed ENNC(PENNC)are compared with the one of conventional optimal controller and the conventional evolving neural network controller (CENNC) through the simulation and experimental results. And we showed that the finally optimized PENNC was very useful in the stabilization control of an IP system.

  • PDF

Evolutionary Network Optimization: Hybrid Genetic Algorithms Approach

  • Gen, Mitsuo
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 ISIS 2003
    • /
    • pp.195-204
    • /
    • 2003
  • Network optimization is being increasingly important and fundamental issue in the fields such as engineering, computer science, operations research, transportation, telecommunication, decision support systems, manufacturing, and airline scheduling. Networks provide a useful way to modeling real world problems and are extensively used in practice. Many real world applications impose on more complex issues, such as, complex structure, complex constraints, and multiple objects to be handled simultaneously and make the problem intractable to the traditional approaches. Recent advances in evolutionary computation have made it possible to solve such practical network optimization problems. The invited talk introduces a thorough treatment of evolutionary approaches, i.e., hybrid genetic algorithms approach to network optimization problems, such as, fixed charge transportation problem, minimum cost and maximum flow problem, minimum spanning tree problem, multiple project scheduling problems, scheduling problem in FMS.

  • PDF

신경회로망과 유전자 알고리즘을 이용한 열연두께 정도 향상 (Improvement of Thickness Accuracy in Hot-rolling Mill Using Neural Network and Genetic Algorithm)

  • 손준식;김일수;이덕만;권영섭
    • 한국공작기계학회논문집
    • /
    • 제15권5호
    • /
    • pp.59-64
    • /
    • 2006
  • The automation of hot rolling process requires the developments of several mathematical models for simulation and quantitative description of the industrial operations involved in order to achieve the continuously increasing productivity, flexibility and quality(dimensional accuracy, mechanical properties and surface properties). The mathematical modeling of hot rolling process has long been recognized to be a desirable approach to investigate rolling operating practice and design of mill requirement. To achieve this objectives, a new teaming method with neural network to improve the accuracy of rolling force prediction in hot rolling mill is developed. Also, Genetic Algorithm(GA) is applied to select the optimal structure of the neural network and compared with that of engineers experience. It is shown from this research that both structure selection methods can lead to similar results.