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Abstract - Network optimization is being increasingly
important and fundamental issue in the fields such as
engineering, computer science, operations research,
transportation, telecommunication, decision support
systems, manufacturing, and airline scheduling.
Networks provide a useful way to modeling real world
problems and are extensively used in practice.

Many real world applications impose on more
complex issues, such as, complex structure, complex
constraints, and multiple objects to be handled
simultaneously and make the problem intractable to
the traditional approaches. Recent advances in
evolutionary computation have made it possible to
solve such practical network optimization problems.

The invited talk introduces a thorough treatment of

evolutionary  approaches, ie., hybrid genetic
algorithms approach to network optimization
problems, such as, fixed charge transportation

problem, minimum cost and maximum flow problem,
minimum spanning tree problem, multiple project
scheduling problems, scheduling problem in FMS.
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L.  INTRODUCTION

Network optimization is being increasingly important
and fundamental issue in the fields such as engineering,
computer science, operations research, transportation,
telecommunication, decision support systems,
manufacturing, and airline scheduling. Networks provide a
useful way to modeling real world problems and are
extensively used in practice (Bertsekas and Gailager 1992).
Many real world applications impose on more complex
1ssues, such as, complex structure, complex constraints,
and multiple objects to be handled simultaneously and
make the problem intractable to the traditional approaches.
Recent advances in evolutionary computation have made it
possible to solve such practical network optimization
problems (Gen and Kim 1998; Gen, Cheng & Oren, 2001).

Genetic algorithms are one of the most powerful and
broadly applicable stochastic search and optimization
techniques based on principles from evolution theory
(Holland, 1975; Goldberg, 1989). In the past few years, the

genetic algorithms community has turned much of its
attention toward the optimization of network design
problems (Gen and Cheng, 1997; Gen and Cheng, 2000).
This paper is intended to introduce the applications of GAs
to some difficult-to-solve network design problems (Gen,
Zhou and Kim, 1999; Gen, Cheng and Oren, 2001).

The invited talk introduces a thorough treatment of
evolutionary approaches, ie., adaptation of genetic
algorithms approach to network optimization problems,
such as, fixed charge transportation problem, minimum
spanning tree problem, minimum cost and maximum flow
problem, multiple project scheduling problems, scheduling
problem in FMS.

IL. ADAPTATION OF GENETIC ALGORITHMS

Genetic algorithms were first created as a kind of
generic and weak method featuring binary encoding and

binary genetic operators. This approach requires a
modification of an original problem into an appropriate
form suitable for the genetic algorithms, as shown in
Figure 2.1. The approach includes a mapping between
potential solutions and binary representation, taking care of
decoders or repair procedures, etc. For complex problems,
such an approach usually fails to provide successful
applications.
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To overcome such problems, various non-standard
implementations of the genetic algorithms have been
created for particular problems. As shown in Figure 2.2,
this approach leaves the problem unchanged and adapts the
genetic  algorithms by modifying a chromosome
representation of a potential solution and applying
appropriate genetic operators. But in general, it is not a
good choice to use the whole original solution of a given
problem as the chromosome because many real problems
are too complex to have a suitable implementation of
genetic algorithms with the whole solution representation.
Generally, the encoding methods can be either direct or
indirect. In the direct encoding method, the whole solution
for a given problem is used as a chromosome. For a
complex problem, however, such a method will make
almost all of the conventional genetic operators unusable
because a vast number of offspring will be infeasible or
illegal. On the contrary, in the indirect encoding method,
just the necessary part of a solution is used as a
chromosome. A decoder then produces the solution. A
decoder is a problemrspecific and determining procedure to
generate a solution according to the permutation and/or the
combination of the items produced by genetic algorithms.
With this method, the genetic algorithms will focus their
search solely on the interesting part of solution space.

A third approach is to adapt both the genetic
algorithms and the given problem, as shown in Figure 2.3.
A common feature of combinatorial optimization problems
is to find a permutation and/or a combination of some
items associated with side constraints. If the permutation
and/or combination can be determined, a solution then can
be derived with a problem-specific procedure. With this
third approach, genetic algorithms are used to evolve an
appropriate permutation and/or combination of some items
under consideration, and a heuristic method is
subsequently used to construct a solution according to the
permutation and combination.
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Figure 23 The third approach: adapt both the genetic
algorithms and the problem

This approach has been successfully applied in the
area of industrial engineering and has recently become
the main approach for the practical use of genetic
algorithms in the network design and optimization.

1. FIXED CHARGE TRANSPORTATION
PROBLEM

The fixed charge transportation problem (fc-TP) is an
extension of the transportation problem (TP) and many
practical transportation and distribution problems can be
formulated as this problem. For instance, in a
transportation problem, a fixed cost may be incurred for
each shipment between a given plant and a given consumer
and a facility of a plant or warehouse may result in a fixed
amount on investment. The fc-TP problem is much more
difficult to solve due to the presence of fixed costs, which
cause discontinuities in the objective function. Given m
plants and n consumers, the problem can be formulated as
follows:

fe-TP:

min 9= 3 (/09 +d,g(x,) 6

n

s. t. Zx,.jsa,., i=1,2, m (3.2)

j=1

m
x;2b;,  j=1,2, = (3.3)

i=1
x;20, Vi, j 3.4)

where x =[x;] is the unknown quantity to be transported
from plant i to consumer j, f;;(x) is the objective function of

shipping, and
glxy)= {

where d;; is the fixed cost. Many solution procedures have
been proposed for the fixed charge transportation problem
range from exact solution algorithms to heuristic methods.

Recently, Gottlieb and Paulmann (1998) proposed a
genetic algorithm based on permutation representation for
this problem. Sun, Aronson, Mckeown, and Drinka (1998)
proposed a tabu search method. Since the solution of the

problem has a network structure characterized as spanning
tree, Gen, Li and Ida proposed a spanning tree-based
genetic algorithms (Gen and Li, 1997, 1998; Gen, Li, and
Ida, 1999, 2000; Gen, Choi & Ida, 2000). Figure 3.1 shows
a simple example of transportation alternatives, expressed
as a spanning tree. A transportation alternative can be

encoded by a Pr er number as shown in Figure 3.2. The
detail of the decoding procedure from a Pr er number to a
transportation tree was given in the book (Gen and Cheng,
2000).

Because a transportation tree is a special type of
spanning tree, the Pr er number encoding may correspond
to an infeasible solution. Gen and Li designed a criterion
for checking the feasibility of chromosomes. One-point

1, if x; > 0 35
0, otherwise (3:3)
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crossover and inversion mutation were used to explore new
solutions.
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Figure 3.1 A transportation a lternatives with a spanning
tree structure

P(T)=[5223283 ]
Figure 3.2 A transportation alternatives with a spanning
tree structure

To demonstrate the effectiveness and efficiency of the
spanning tree based genetic algorithm for the problem, Gen
and Li carried out numerical experiments and compared
with the matrix-based genetic algorithm (Vignaux and
Michalewicz, 1991). For the small-scale problem, there
was no obvious difference on results. For the larger scale
problems, the spanning tree-based genetic algorithm can

get the optimal or near optimal solutions wit (Li & Gen,
1997; Li, 1999; Kim, Gen & Ida, 1999; Kim, 2000).

IV. MINMUM SPANNING TREE PROBLEM

A spanning tree structure is the best topology for
telecommunication network designs, which usually
consists of finding the best way to link » nodes at different
locations. They may be the host, concentrators,
multiplexors, and terminals. In a real-life network
optimization situation, a spanning tree is often required to
satisfy some additional constraints, such as the edge or
capacity on a node. A tree structure network with the
constraint on the edges is denoted as the
degree-constrained minimum spanning tree problem
(de-MST) (Narula and Ho, 1980; Hall, 1996).

Considering an undirected graph G = (V, E), let V =
{1,2, n}bethesetofnodesandE={(j) | i, j € V)
be the set of edges. For a subset of nodes S (& V), define

ES)={(i))li j € S} be the edges whose end points are

in S. Define the following binary decision variables for all
edges (i, j) EF.
{ 1, if edge(i, j)is selectedina spanningtree
X,'j =
0,

Let w;; be the fixed cost related to edge (i, ), the problem
can be formulated as follows:

@1

otherwise

dc-MST:
n=l »n
min zZx)= D). wyxy 4.2)
i=l j=2
n~l n
s. t. zz xj=n7?1 @.3)
i=l j=2
> Y x=18-15S v\,
ieS jeS.j>1
1922 (4.4)
Y ow S bisl2 on @G5)
j=1
xy=0orl, i=1,2, n-1, j=2,3, n (46

where b; is the constrained degree value for node .
Inequality 6.3) is the constrained degree on each node.
Equality (5.4) is true of all spanning trees. The dc-MST
problem is NP -hard and there are no effective algorithms to
deal with it. Zhou and Gen proposed a genetic algorithms
approach to solve this problem (Zhou and Gen, 1997,
1999; Gen, Zhou and Takayama 2000). There are two
factors which should be taken into consideration if we want
to keep the tree topology in genetic representation: one is
the connectivity among nodes; the other is the degree value
of each node. Therefore, a two-dimension structure was
used as the genetic representation. One dimension encodes
a spanning tree; another dimension encodes degree value.
For a undirected tree, we can take any node as the root
node of it and all other nodes are regarded as being
connected to it hierarchically. Figure 4.1 illustrates an
example of this degree-based permutation.

(1)
(& @ U

Tree
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Figure 4.1 A rooted tree and its degree-based permutation
encoding

Degree-based permutation
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In order to keep the degree constraint and connectivity
between nodes, the genes in the degree dimension need to
satisfy the following conditions: For an n-node tree, the
total degree value for all nodes is 2(n-1). Suppose that d g
is the total degree value of the nodes whose degree value in
degree dimension have been assigned and d,.q is the total
lower bound of the degree values for all those nodes whose
degree value in degree dimension have not been assigned.
Then the degree value for the current node in degree
dimension should hold: no less than 1. The degree value
for the current node together with the number of the rest
nodes should hold: no less than d.4 and no greater than
2(n-1) - dused .

Because this encoding is essentially a permutation one,
uniform crossover and insertion mutations were adopted.
Especially the insertion mutation plays a very important
role for the dc-MST problem as it always keep the
individuals as tree structure and evolves them to the fitter
tree structures. This operator selects a string of genes
(branch of a tree) at random and inserts it in a random gene
(node). The operation is illustrated in Figure 4.2

As a related research on a spanning tree problem
Malikand Yu proposed a branch and bound method for the
Capacitated MST Problem (Malik and Yu, 1993)

EEINRNEIND

Figure 4.2 Illustration of insertion mutation

V. SHORTEST PATH PROBLEM

One of the most common problems encountered in the
analysis of networks is the shortest path problem (Jensen
and Barnes, 1980). The problem is to find a path between
two designated nodes with the minimum total length or
cost. It is a fundamental problem that appears in many
applications involving transportation, routing and
communication. In many applications, however, there are
several criteria associated with traversing each edge of a
network. For example, cost and time measures are both
important in transportation networks, economic and
ecological factors for highway construction. As a result,
there has been recent interest in solving bicriteria shortest
path problem. It is to find paths that are efficient with

3|11
909

respect to both criteria. There is usually no single path that
gives the shortest path with respect to both criteria. Instead,
a set of Pareto optimal paths is preferred. Cheng and Gen
proposed a compromise approach-based genetic algorithm
to solve the bicriteria shortest path problem (Cheng and
Gen 1994; Gen, Cheng and Wang 1997). The compromise
approach, contrary to generating approach, identifies
solutions, which are closest to the ideal solution as
determined by some measure of distance.

How to encode a path for a graph is a critical step.
Special difficulty arises because (1) a path contains
variable number of nodes, and (2) a random sequence of
edges usually does not correspond to a path. To overcome
such difficulties, Cheng and Gen adopted an indirect
approach: encode some guiding information for
constructing a path in a chromosome, but not a path itself
(Cheng and Gen, 1994). A new encoding method, called
proposed priority-based encoding, was introduced. In this
method, the position of a gene was used to represent a node
and the value of the gene was used to represent the priority
of the node for constructing a path among candidates. The
path corresponding to a given chromosome is generated by
sequential node appending procedure with beginning from
the specified node 1 and terminating at the specified node n.
At each step, there are usually several nodes available for
consideration, only the node with the highest priority is
added into path. Consider the undirected graph shown in
Figure 5.1 and a priority-based encoding shown in Figure
5.2. Suppose we want to find a path from node 1 to node
10.

Figure 5.1 A simple undirected graph with 10 nodes and
16 edges

posiion:nodeID 1 2 3 4 5 6 7 8 9 10
valuerpriontty (7 [ 5]4 [6 ]2 [5]|610]1 ]9 |
Figure 5.2 An example of priority-based encoding

At the beginning, we try to find a node for the position next
to node 1. Nodes 2 and 3 are eligible for the position,
which can be easily fixed according to adjacent relation
among nodes. The priorities of them are 3 and 4,
respectively. The node 3 has the highest priority and is put
into the path. The possible nodes next to node 3 are nodes
2, 5 and 6. Because node 6 has the largest priority value, it
is put into the path. Then we form the set of nodes
available for next position and select the one with the
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highest priority among them. Repeat these steps until we
obtain a complete path (1, 3, 6, 7, 8, 10).

The compromise approach can be regarded as a kind
of mathematical formulation of goal seeking behavior in
terms of a distance function. It identifies solutions that are
closet to the ideal solution as determined by following
weighted L,-norm:

5 . 1/ p
r(z;p,w)=[§‘wk”|2k -Zklp} 8.1)

where z =(z,", 7 ) is the ideal solution to the problem.
The parameter p is used to reflect the emphasis of
decision-makers. For the bicriteria shortest path problem,
the ideal point can be easily obtained by solving two single
criterion problems. For many complex problems, to obtain
an ideal point is also a difficult task. To overcome the
difficulty, a concept of proxy ideal point was suggested to
replace the ideal point. The proxy ideal point is the ideal
point corresponding to current generation but not to a given
problem. In the other words, it is calculated in the explored
partial solution space but not the whole solution space. The
proxy ideal point is easy to obtain at each generation.
Along with evolutionary process, the proxy ideal point will
gradually approximate to the real ideal point. Recently,
Ahn and Ramakrishna proposed a new method for solving
the shortest path routing problem (Ahn and Ramakrishna,
2002).

V1. MINIMUM COST/ MAXIMUM FLOW
PROBLEM

The flow problem is structured on a network; where
each arc is imposed to some attribute and the problem is to
find a flow possible from some given source node to a
given sink node subject to conservation of flow constraints
at each node to optimize some criteria. In the maximum
flow problem, each arc is imposed a upper bound, and the
attempt is to find a maximal flow subject to flow bounds
on each arc. In the minimum flow problem, each arc is
associated with a cost, and the attempt is to find a flow
with minimal cost over all arcs. The minimum cost
maximum flow problem is a combination of Maximum
Flow Problem (MXF) and the Minimum Cost Flow (MCF)
problem. It asks for a maximum flow from a source node
to a target node such that the total cost of the flow is
minimal. Gen, Lin and Cheng have proposed a genetic
algorithm to solve this problem (Gen, Lin, and Cheng,
2003).

Consider a given graph G=(V,A) with m nodes i€V
and n arcs (i, j) €4, c;j and u; denote the cost and upper
bound for acr (i), the bicriteria optimal flow problem can
be formulated as follows:

bound for arc (i,j), the bicriteria optimal flow problem can
be formulated as follows:

max z,=v 6.1
min zz=zzcux::/ 2
i=l j=1
s.t. ZX’J.*Zin
i=t k=1
v (=1
—_ 0 f — cen —_
(i=23,--,m=1) 63)
-y (l=m)

v=20

In Gen, Lin and Cheng implementation, a priority-based
representation was adopted to encode a path for the
problem. The encoding method is capable to represent all
feasible paths for a given graph. A special decoding
method is designed to generate a minimum cost and
maximum flow from a given chromosome. Partially match
crossover and swap mutation were used to generate new
solutions. Adaptive weight approach was implemented to
evaluate current population in order to give a search
pressure towards to the positive ideal point (Gen and
Cheng, 2000; Gen, Ida and Kim, 1998). Figure 6.1 shows
an example of the bicriteria optimal flow problem with 25
nodes and 49 arcs. Figure 62 shows the set of Pareto
solutions found by the proposed genetic algorithm.

8,20

Figure 6.1 An example of bicriteria optimal flow problem
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Figure 6.2 The set of Pareto solutions found by GA

VII. SCHEDULING PROBLEMS IN FMS
ENVIRONMENTS

Kim, Gen and Yamazaki have investigated a special
case of scheduling problems in flexible manufacturing
systems (FMS), transformed the problem into a Multistage
Process Planning Problem (Chang and Wysk 1985) as
described by Zhou and Gen (Zhou and Gen, 1997), and
then solved with a hybrid genetic algorithm (Yang, 2001,
Gen, Kim and Yamazaki, 2003; Kim, Gen, Moon and
Yamazaki, 2003).

The flexible manufacturing system is an enhancement
of the cellular manufacturing paradigm. Typical flexible
manufacturing  system is composed of multiple
workstations (or machine centers), a material handling
system, and a loading-unloading station (Bedworth and
Bailey, 1987). In FMS environment, the objectives of the

scheduling problem are to minimize the makespan f,,,

total flow time £, and total tardiness penalty p; of the

project.

mn ¢, =&, a1
J

min £, = > ¢,,(J;) (7.2)
—~

min pr = 3 mX{ 100 (J)) ~ 100 (7)), 0} % € () T3

j=1
st Ly~ 2 Paons V. €S, (7.4)
t,20,i=12m- I, k=12n-K (1.5
J; 20, j=12,.J (7.6)
where [, denotes the finish time of operation O; on
workstation PVk , Dy the processing time of operation

0, on workstation W, , Au the set of operations at the

time 1, tmn(Jj) the finish time of the last operation
0, on workstation W, about job J,, f,,(J;)the due
date of the jobJ;, Cpp(J;) the total penalty cost of the

job J ;- Equation (.1) is to minimize the makespan of

whole system. Equation (7.2) is to minimize the total flow
time. Equation (7.3) is to minimize total penalty. Constraint
(7.4) ensures that none of the precedence constraints are
violated.

Consider a simple FMS scheduling case with three
workstations (W,, W,, W3), three jobs (Ji, /2, J3) run in each
workstation, and each job requires two kinds of operations
among possible four operations (01, 02, 03,04). Suppose the
processing time of each operation is given in Table 7.1.
Table 7.2 shows relevant data pertaining to each job that
must be scheduled in the system.

Table 7.1 Workstation and processing time data of each

operation
Workstation 0, 0, o, 04
],Vl 20 20 8 39
W, 26 8 52 41
W, 8 30 38 8
Average 23 25 45 40
Table 7.2 Job-related data for example of FMS problem
Job no. Requn"ed t 41 top Cop
operations
Ji 0,0, 68 94 1
J 2 '02 — 03 70 l OO l
J 3 04 —_ 03 85 1 0 1 l

t ;7p: The average total processing time,

tpp: The due date, cp: The total penalty cost

Then the problem can be represented as a network flow
shown in Figure 7.1 by the chromosome in Figure 7.2.

, Sugel o,

Sugez ¢ Stged 4 Smged  °  supes o

L=p; 9, Jy=log o}

Figure 7.1 The flow network representation for a simple
FMS problem.
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Kim et al used the state permutation encoding method in
their genetic algorithm implementation. A chromosome for
the example given in above figure is shown as follows. A
SPT (shortest processing time} first heuristic rule is used to
decode the chromosome into a feasible schedule.

1{3(1{2]1213

Figure 7.2 State permutation encoding

A neighborhood search technique based mutation operation
was used in order to have more chance to find out
improved solutions. A fuzzy logic controller was used to
adjust crossover and mutation parameters during
evolutionary process.
VIIL RESOURCE CONSTRAINED PROJECT
SCHEDULING PROBLEM

The problem of scheduling activities under resource
and precedence restrictions with the objective of
minimizing the project duration is referred to as the
resource constrained project scheduling problem in
literature (Baker, 1974). The basic problem can be stated as
follows. A project consists of a number of interrelated
activities. Each activity is characterized by a known
duration and given resource requirements. Resources are
available in limited quantities but renewable from period to
period. There is no substitution between resources and
activities cannot be interrupted. A solution is to determine
the start times of activities with respect to the precedence
and resource constraints so as to optimize the objective.
Following picture shows a well-known benchmark
problem given by Daivs in 1975, presented as a directed
acyclic graph (Davis, 1975).

Resource Limits: IV} = 6 units 1", = 6 units 1J} = 6 units

352 332 154 246 321 /n

Figure 8.1 A benchmark problem given by Davis in 1975

Most of heuristic methods for the problem known so
far can be viewed as priority dispatching rules, which
assign activity priorities in making sequencing decisions
for resolution o resource conflicts according to either
temporally related heuristic rules or resource-related
heuristic rules. Cheng and Gen have proposed a hybrid

genetic algorithm to the resource-constrained project
scheduling problem (Cheng and Gen, 1994). In essentials,
the problem consists of two basic issues: (a) how to
determine the processing order of activities without
violating the precedence constraints and (b) how to
subsequently determine the start time for each activity
without violating the resource constraint, resource
constraint. How to determine the order of activities is
critical to the problem because that if the order of activities
is determined, a schedule then can be easily constructed
with some determining procedures according to the order.
A priority-based encoding method is proposed to handle
this difficulty, based on the concepts of the topological sort
of a directed acyclic graph (Cheng and Gen, 1998). A local
search-based mutation method was proposed to hunt for an
improved solution other than just random search as the
usual mutation does.

Kim, Gen, and Yamazaki proposed a hybrid genetic
algorithm for solving the basic type of resource constrained
project scheduling problem (Kim, Gen, and Yamazaki,
2003a). A fuzzy logic controller (FLC) is used to adjust
crossover and mutation ratio (Lee, 1990). The basic idea is
that to increase the ratio when the change of average
fitness value among population is insignificant and to
decrease the ratio when the change is significant. The
architecture of hybrid genetic algorithm by the
combination of FLC and GA is shown in Figure 8.2.

AevalV 1)

Fuzzy

I
P Logic
AevalV .t Controller

A

ACVAL Y, Ryt

Figure 8.2 The architecture of hybrid GA with FLC.

The fuzzy logic controller is a kind of rule-based
system, which is based on fuzzy logic and fuzzy set theory.
Generally, the behavior of genetic algorithms depends on
many uncertain factors, and only incomplete knowledge
and imprecise information are available for identification
of the relationship between the strategy parameters and the
behavior of genetic algorithms. Thereforr, it is suitable for
the fuzzy logic controllers to dynamically adjust these
parameters. When utilizing a fuzzy logic controller to
adjust the strategy parameters of genetic algorithms,
diversity measure, fitness values, and current parameters
are taken as inputs of if-then rules. Outputs indicate values
of strategy parameters, that is, the crossover and mutation
ratio. They adopted the implementation of the fuzzy logic
controller suggested by Wang et al (Wang, Wang, and Hu,
1997). The basic structure of the method consists of two
fuzzy logic controllers: one adjusts the crossover ratio and
one adjusts the mutation ratio. The heuristic method for
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updating the crossover ratio is to consider the changes in
the average fitness of the population.

Kim et al further extended their work into multiple
projects case (Kim, Yun, Yoon, Gen, and Yamazaki, 2003).
The problem consists of multiple projects, and precedence
constraints among projects are given. In each project, there
are a number of activities with known processing time and
multiple resources consumption. Start time of each activity
is dependent upon the completion of some other activities
(precedence constraints of activities). The multiple
resources are available in limited quantities but renewable
from period to period. Activities can not be interrupted,
there is only one execution mode for each activity. The
managerial objective is to minimize the total project time
and the total tardiness penalty for all projects. The
following figure shows an illustrative example of the
problem.

Figure 8.3 An illustrative example of resource constrained
multiple projects scheduling problem

Let i denote the project index, j the activity index in

each project, r the nonrenewable resource index, Pi the
F

processing time of activity j in project i, !4 the finish times

F
of activity j in project i, ' the finish times of last activity J
s

in project i, Y the start times of activity j in project i,

by the scheduling activity j in project i consumes resource

M
units per period from resource r, L the maximum-limited
resource r only available with the constant period

availability, 4 the set of activities being in progress in

D
period ¢, % the due date of the project i (the promised
P
delivery time of project), % the total penalty cost of the

project i, then the problem can be formulated as follows:

1
mn ¢, = Zt,.i 8.1
i=1
I
min p, = ¢ x(t;—t7) (82)
i=1
S S .
st foy,+ Peys Sty Vi @8.3)
N S ..
Loy ¥ Pigoy St Vi, j (8.4)
M
>3, <l
icd, je4,

i=0,.,l+1,j=0,..J+1,rerR (8.5)

where
RN K
0 ; 4y St

The objective function (8.1) minimizes the total
project time. Equation (8.2) defines the penalty costs for all
projects. Constraint (83) states precedence relations
among projects. Constraint (8.4) indicates precedence
relations among activities. Constraint (8.5) corresponds to
resource constrains.

A hybrid genetic algorithm with fuzzy logic controller
was ‘adopted to solve the resource-constrained multiple
project scheduling problem. The priority-based encoding
was extended to cope with the multiple projects situation
and swap mutation and local search-based mutation were
adapted for this encoding. The fuzzy logic controlier was
used to adjust parameters of genetic algorithm during
evolutionary process.

Lastly as a related area with network optimization
problems there are several areas such as the location-
allocation problem with obstacle and the capacitated
location-allocation problem by hybrid genetic algorithms
(Gong, Gen, Yamazaki and Xu, 1995; 1997), Walters and
Smith proposed evolutionary algorithm for optimal layout
of tree networks (Walters and Smith, 1995) and recently
Zhou and Gen reported a genetic algorithm approach on
tree-like telecommunication network design problem
(Zhou and Gen, 2003).

(8.6)

IX. CONCLUSION

With the development of modern society, the data
communication has become very important part in human
being life. Actually, this trend will continue to the next
century or even further future. Simultaneously, it also
brings about many problems related with varieties of
network designs to us. In this paper, we gave out a brief
review about our recent research works in this field.
Different from many other conventional techniques, we
developed the genetic algorithms to deal with all these
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network design problems. Our limited computational
experience showed that the genetic algorithms approach is
very effective to solve such kinds of networks design
problems. Especially, with the increase of problem scale,
and some complicated constraints, the genetic algorithms
showed their even great potential power to cope with all
these network design problems. The key issue for solve
those problems successfully is if we can invent an
encoding method that well matches the instinct nature of a
given problem. From this point of view, the genetic
algorithms are not only means of algorithms or techniques,
but also a kind of art in the sense that the problems were
solved in coding space instead of the solutions space
themselves. The paper therefore focused on such kind of
state-of-the-art in the genetic algorithms approach on these
network design problems.
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