• Title/Summary/Keyword: Genetic mutations

Search Result 655, Processing Time 0.029 seconds

Familial Glycogen Storage Disease Type IXa Diagnosed by Targeted Exome Sequencing (엑솜 시퀀싱으로 진단된 가족성 당원병 IXa 형 증례)

  • Sohn, Young Bae;Jang, Ju Young;Lee, Dakeun;Jang, Ja-Hyun
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.17 no.3
    • /
    • pp.96-102
    • /
    • 2017
  • Glycogen storage disease type IX (GSD IX) is caused by deficiency of phosphorylase kinase which plays a role in breakdown of glycogen. Mutations in PHKA2 are the most common cause of GSD IX (GSD IXa). Clinical manifestations of GSD IXa include hepatomegaly, elevation of liver enzyme, growth retardation, fasting hypoglycemia, and fasting ketosis. However, the symptoms overlap with those of other types of GSDs. Here, we report Korean familial cases with GSD IXa whose diagnosis was confirmed by targeted exome sequencing. A 4-year old male patient was presented with hepatomegaly and persistently elevated liver enzyme. Liver biopsy revealed swollen hepatocyte filled with glycogen storage, suggesting GSDs. Targeted exome sequencing was performed for the differential molecular diagnosis of various types of GSDs. A hemizygous mutation in PHKA2 were detected by targeted exome sequencing and confirmed by Sanger sequencing: c.3632C>T (p.Thr121Met), which was previously reported. The familial genetic analysis revealed that his mother was heterozygous carrier of c.3632C>T mutation and his 28-month old brother had hemizygous mutation. His brother also had hepatomegaly and elevated liver enzyme. The hypoglycemia was prevented by frequent meals with complex carbohydrate, as well as cornstarch supplements. Their growth and development is in normal range. We suggest that targeted exome sequencing could be a useful diagnostic tool for the genetically heterogeneous and clinically indistinguishable GSDs. A precise molecular diagnosis of GSD can provide appropriate therapy and genetic counseling for the family.

  • PDF

Identification of Compound Heterozygous Alleles in a Patient with Autosomal Recessive Limb-Girdle Muscular Dystrophy (상염색체 열성 지대형 근이영양증 환자로부터 TTN 유전자의 복합 이형접합성 대립유전자의 분리)

  • Choi, Hee Ji;Lee, Soo Bin;Kwon, Hye Mi;Choi, Byung-Ok;Chung, Ki Wha
    • Journal of Life Science
    • /
    • v.31 no.10
    • /
    • pp.913-921
    • /
    • 2021
  • Limb-girdle muscular dystrophy (LGMD) which is characterized by progressive muscle weakening of the hip and shoulder shows both dominant and recessive inheritances with many pathogenic genes including TTN. This study performed to identify genetic causes of a male patient with late onset (45 years old) autosomal recessive LGMD and atrial flutter. By application of the whole exome sequencing, we identified bi-allelic variants of TTN gene in the patient. One allele had a single missense variant of [c.24124G>T (p.V8042F)], while the other allele consisted of three missense variants of [c.29222G>C (p.R9741P) + c.67490A>G (p.H22497R) + c.75376C>T (p.R25126C)]. The p.V8042F allele was transmitted from his mother, while the other haplotype allele was putatively transmitted from his father. His two unaffected sons had only the p.R9741P. These variants have been not reported or rarely reported in the public human genome databases (1,000 Genome, gnomAD, and KRGDB). Most variants were located in the highly conserved immunoglobulin or fibronectin domains and were predicted to be pathogenic by the in silico analyses. The TTN giant protein plays a key role in muscle assembly, force transmission at the Z-line, and maintenance of resting tension in the I-band. In conclusion, we think that these bi-allelic compound heterozygous mutations may play a role as the genetic causes of the LGMD phenotype.

A Case Report of Novel Mutation in GNPTAB in Two Siblings with Mucolipidosis Type III Alpha/beta (GNPTAB 유전자에서 새로운 돌연변이가 확인된 뮤코지방증 III형 남매)

  • Kim, Min-Sun;Park, Esther;Song, Ari;Im, Minji;Park, Hyung-Doo;Cho, Sung Yoon;Jin, Dong-Kyu
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.18 no.3
    • /
    • pp.99-106
    • /
    • 2018
  • Mucolipidosis type III (pseudo-Hurler polydystrophy) is a mucolipids degrading disorder caused by a mutation in the GNPTAB gene and is inherited by autosomal recessive. It is diagnosed by examining highly concentrated mucolipids in blood and the diagnosis can be confirmed by genetic testing. Mucolipidosis type III is a rare and progressive metabolic disorder. Its initial signs and symptoms usually occur around 3 years of age. Clinical manifestations of the disease include slow growth, joint stiffness, arthralgia, skeletal abnormalities, heart valve abnormalities, recurrent respiratory infection, distinctive facial features, and mild intellectual disability. Here, we are presenting two siblings of mucolipidosis type III, a 4-year-old female and a 2 years and 7 months old male with features of delayed growth and coarse face. The diagnosis was confirmed by [c.2715+1G>A(p.Glu906Leufs*4), c.2544del(p.Glu849Lysfs*22)] mutation in targeted gene panel sequencing. In this case, c.2544del is a heterozygote newly identified mutation in mucolipidosis type III and was not found in the control group including the genome aggregation database. And it is interpreted as a pathogenic variant considering the association with phenotype. Here, we report a Korean mucolipidosis type III patients with novel mutations in GNPTAB gene who have been treated since early childhood. Owing to recent development of molecular genetic techniques, it was possible to make early diagnosis and treatment with pamidronate was initiated appropriately in case 1. In addition to these supportive therapies, efforts must be made to develop fundamental treatment for patients with early diagnosis of mucolipidosis.

  • PDF

Characterization of Dopamine Receptor D4 Gene Polymorphisms in Horses (말에서 Dopamine Receptor D4 유전자의 변이 특성 분석)

  • Choi, Jae-Young;Choi, Yeonju;Lee, Jongan;Shin, Sang-Min;Yoon, Minjung;Kang, Yong-Jun;Shin, Moon-Cheol;Yoo, Ji-Hyun;Kim, Hyeonah;Cho, In-Cheol;Yang, Byoung-Chul;Kim, Nam-Young
    • Journal of Life Science
    • /
    • v.32 no.1
    • /
    • pp.29-35
    • /
    • 2022
  • This study was conducted to analyze the genetic polymorphisms of dopamine receptor D4 (DRD4) in horse breeds and its association with substrate characteristics in Jeju crossbreds (Jeju Horse × Thoroughbred). Polymorphisms in DRD4 are candidate genes associated with temperament in various mammals, including humans. Single nucleotide polymorphism (SNP) G292A in the exon 3 region of the horse DRD4 has a reported association with curiosity and vigilance in thoroughbreds. Sanger sequencing was used to identify polymorphisms of the mutations in DRD4 in three horse breeds. The SNP frequency in Jeju horses was significantly different from the frequency in other breeds. Character evaluation, conducted in the Jeju crossbreds and scored using a temperament test and contact test, revealed a high correlation between each test. Comparison of the polymorphism in the DRD4 of horses and the results of the character evaluation revealed lower scores for all temperaments in horses carrying allele A. Comparison of the SNP of G292A and blood dopamine levels in Jeju crossbreds showed 2.87 times higher levels for the GA type than for the GG type. This study identified an association between DRD4 polymorphism and various test methods for evaluating horse temperament and levels of neurotransmitters. Further research could validate the use of this gene as a genetic marker for character evaluation.

Development of a Molecular Selection Marker for Bacillus licheniformis K12 (Bacillus licheniformis K12 균주 분자 선발 마커 개발)

  • Young Jin Kim;Sam Woong Kim;Tae Wok Lee;Won-Jae Chi;Woo Young Bang;Ki Hwan Moon;Tae Wan Kim;Kyu Ho Bang;Sang Wan Gal
    • Journal of Life Science
    • /
    • v.33 no.10
    • /
    • pp.808-819
    • /
    • 2023
  • This study was conducted to develop a selection marker for the identification of the Bacillus licheniformis K12 strain in microbial communities. The strain not only demonstrates good growth at moderate temperatures but also contains enzymes that catalyze the decomposition of various polymer materials, such as proteases, amylases, cellulases, lipases, and xylanases. To identify molecular markers appropriate for use in a microbial community, a search was conducted to identify variable gene regions that show considerable genetic mutations, such as recombinase, integration, and transposase sites, as well as phase-related genes. As a result, five areas were identified that have potential as selection markers. The candidate markers were two recombinase sites (BLK1 and BLK2), two integration sites (BLK3 and BLK4), and one phase-related site (BLK5). A PCR analysis performed with different Bacillus species (e.g., B. licheniformis, Bacillus velezensis, Bacillus subtilis, and Bacillus cereus) confirmed that PCR products appeared at specific locations in B. licheniformis: BLK1 in recombinase, BLK2 in recombinase family protein, and BLK3 and BLK4 as site-specific integrations. In addition, BLK1 and BLK3 were identified as good candidate markers via a PCR analysis performed on subspecies of standard B. licheniformis strains. Therefore, the findings suggest that BLK1 can be used as a selection marker for B. licheniformis species and subspecies in the microbiome.

Generation of a transgenic mouse model to study cranial suture development; Apert syndrome (두개봉합 발육 연구를 위한 형질변환 쥐의 개발 : 어퍼트 신드롬)

  • Lee, Kee-Joon;Ratisoontorn, Chootima;Baik, Hyoung-Seon;Park, Young-Chel;Park, Kwang-Kyun;Nah, Hyun-Duck
    • The korean journal of orthodontics
    • /
    • v.33 no.6 s.101
    • /
    • pp.485-497
    • /
    • 2003
  • The form and function of the craniofacial structure critically depend on genetic information. With recent advances in the molecular technology, genes that are important for normal growth and morphogenesis of the craniofacial skeleton are being rapidly uncovered, shaping up modem craniofacial biology. One of them is fibroblast growth factor receptor 2 (FGFR2). Specific point mutations in the. FGFR2 gene have been linked to Apert syndrome, which is characterized by premature closure of cranial sutures and craniofacial anomalies as well as limb deformities. To study pathogenic mechanisms underlying craniosynostosis phenotype of Apert syndrome, we used a transgenic approach; an FGFR2 minigene construct containing an Apert mutation (a point mutation that substitute proline at the position 253 to arginine; P253R) was introduced into fertilized mouse germ cells by DNA microinjection. The injected cells were then allowed to develop into transgenic mice. We used a bone-specific promoter (a DNA fragment from the type I collagen gene) to confine the expression of mutant FGFR2 gene to the bone tissue, and asked whether expression of mutant FGFR2 in bone is sufficient to cause the craniosynostosis phenotype in mice. Initial characterization of these mice shows prematurely closed cranial sutures with facial deformities expected from Apert patients. We also demonstrate that the transgene produces mutant FGFR2 protein with increased functional activities. Having this useful mouse model, we now can ask questions regarding the role of FGFR2 in normal and abnormal development of cranial bones and sutures.

TNF-α stimulated IL-8 and IL-10 expression in monocytes from patients with chronic granulomatous disease (만성육아종질환 환자 단핵구에서 TNF-α 자극에 의한 IL-8과 IL-10의 발현 양상)

  • Shin, Kyung-Sue
    • Clinical and Experimental Pediatrics
    • /
    • v.51 no.10
    • /
    • pp.1096-1101
    • /
    • 2008
  • Purpose : Patients with chronic granulomatous disease (CGD) have genetic mutations in a component of the NADPH oxidase enzyme that is necessary for the generation of the superoxide anion. The profound defect in innate immunity is reflected by the patients susceptibility to catalase-positive bacteria and fungi. In addition, CGD patients display signs of persistent inflammation, which is not associated only with deficient superoxide anion production. The aim of this study was to elucidate the cytokine responses in CGD patients after $TNF-{\alpha}$ stimulation. Methods : Heparinized blood samples were collected from 8 CGD patients and 10 healthy volunteers. Monocytes ($1{\times}10^6cell/well$) isolated by the magnet cell isolation system were incubated with a constant amount of $TNF-{\alpha}$ (10 ng/mL) at $37^{\circ}C$ for 6 h. Incubated cells were harvested at 60-min intervals for IL-8 and IL-10 mRNA analysis, and the supernatant was collected at the same intervals to determine IL-8 and IL-10 expression. Monocytes from healthy volunteers were also incubated with antioxidants followed by $TNF-{\alpha}$ stimulation for IL-8 and IL-10 expression. Results : In CGD patients, a high expression of IL-8 together with a significantly higher IL-10 expression than in the healthy controls was seen after $TNF-{\alpha}$ stimulation. Moreover, normal monocytes treated with antioxidants exhibited increased IL-8 responses. Conclusion : The absence of phagocyte-derived reactive oxidants in CGD might be associated with a dysregulated production of pro- and antiinflammatory cytokines. Additional research related to reactive oxidants is needed to clarify the role of cytokines in CGD patients.

Stability of Human Centromeric Alphoid DNA Repeat during Propagation in Recombination-Deficient Yeast Strains (효모의 재조합 변이주를 이용한 인간 Centromeric Alphoid DNA Repeat의 안정성에 관한 연구)

  • Kim, Kwang-Sup;Shin, Young-Sun;Lee, Sang-Yeop;Ahn, Eun-Kyung;Do, Eun-Ju;Park, In-Ho;Leem, Sun-Hee;SunWoo, Yang-Il
    • Korean Journal of Microbiology
    • /
    • v.43 no.4
    • /
    • pp.243-249
    • /
    • 2007
  • The centromere is a highly differentiated structure of the chromosome that fulfills a multitude of essential mitotic and meiotic functions. Alphoid DNA (${\alpha}$-satellite) is the most abundant family of repeated DNA found at the centromere of all human chromosomes, and chromosomes of primates in general. The most important parts in the development of Human Artificial Chromosomes (HACs), are the isolation and maintenance of stability of centromeric region. For isolation of this region, we could use the targeting hook with alphoid DNA repeat and cloned by Transformation-Associated Recombination (TAR) cloning technique in yeast Saccharomyces cerevisiae. The method includes rolling-circle amplification (RCA) of repeats in vitro to 5 kb-length and elongation of the RCA products by homologous recombination in yeast. Four types of $35\;kb{\sim}50\;kb$ of centromeric DNA repeat arrays (2, 4, 5, 6 mer) are used to examine the stability of repeats in homologous recombination mutant strains (rad51, rad52, and rad54). Following the transformation into wild type, rad51 and rad54 mutant strains, there were frequent changes in inserted size. A rad52 mutant strain showed extremely low transformation frequency, but increased stability of centromeric DNA repeat arrays at least 3 times higher than other strains. Based on these results, the incidence of large mutations could be reduced using a rad52 mutant strain in maintenance of centromeric DNA repeat arrays. This genetic method may use more general application in the maintenance of tandem repeats in construction of HAC.

Biochemical Characterizations of Phenylalanine Ammonia-Lyase and its Mutants to Develop an Enzymatic Therapy for Phenylketonuria (페닐케톤뇨증의 효소치료 개발을 위한 phenylalanine ammonia-lyase 및 유전자 변이형의 생화학적 특성)

  • Kim, Woo-Mi
    • Journal of Life Science
    • /
    • v.19 no.9
    • /
    • pp.1226-1231
    • /
    • 2009
  • Enzyme substitution with recombinant phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) is currently being explored for treatment of phenylketonuria (PKU), an autosomal recessive genetic disorder with mutations of the gene encoding phenylalanine-4-hydroxylase (EC 1.14.16.1). However, oral administration of PAL is limited because of proteolytic digestion in the gastrointestinal tract. The aim of this study was to determine the biochemical properties of PAL and delinate the susceptibility of wild-type PAL to pancreatic proteolysis by exploring several mutants, and to develop therapeutic drugs with PAL for PKU. The specific activity of PAL was assayed and its optimal pH, temperature stability, and intestinal protease susceptibility were investigated. Its $V_{max}$ values for phenylalanine and tyrosine were 1.77 and $0.47{\mu}mol$/ min/mg protein, respectively, and its $K_m$ values were $4.77{\times}10^{-4}$ and $4.37{\times}10^{-4}\;M$, respectively. PAL showed an optimal pH at 8.5, corresponding to the average pH range of the small intestine. It showed no loss of activity at $-80^{\circ}C$ for 5 months and possessed 93.4% of its activity under $4^{\circ}C$ for 4 wks. PAL was susceptible to chymotrypsin digestion and, to a lesser extent, to trypsin, elastase, carboxypeptidase A, and B. The trypsin and chymotrypsin cleaving sites were mutated to investigate protection from pancreatic digestion and the specific activities of these mutants were evaluated. The six mutants displayed low specific activities compared to the wild-type, suggesting that the primary trypsin and chymotrypsin cleaving sites may be essential for catalytic reaction. The PAL mutants could therefore be applied as a pretreatment modality without susceptibility to proteolytic attack, however, additional modification for enhancing enzymatic activity is needed to reduce the Phe levels effectively.

Determination of optimum gamma ray range for radiation mutagenesis and hormesis in quinoa (Chenopodium quinoa Willd.)

  • Park, Chan Young;Song, Seon Hwa;Sin, Jong Mu;Lee, Hyeon Young;Kim, Jin Baek;Shim, Sang In
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.240-240
    • /
    • 2017
  • Quinoa (Chenopodium quinoa Willd.) is one of the ancient crops cultivated in the Andes region at an altitude of 3,500-4000m in Chile and Bolivia from 5000 BC. It contains a large amount of protein, minerals and vitamins in comparison with other crops. The cultivation area has been increasing worldwide because of its excellent resistance to various abiotic stress such as salinity, drought and low temperature. ${\gamma}$-Ray radiation of high dose is often used as a tool to induce mutations in plant breeding, but it has a deleterious effect on organisms. However, the radiation may have a positive stimulatory effect of 'hormesis' in the low dose range. This experiment was carried out to investigate the optimum dose range for creating the quinoa genetic resources and to investigate the hormesis effect at low dose on the quinoa. This experiment was performed for 120 days from November, 2016 to February, 2017 in the greenhouse of Gyeongsang National University. ${\gamma}$-Ray radiation was irradiated to seeds at 0 Gy, 50 Gy, 100 Gy, 200 Gy, 300 Gy, 400 Gy, 600 Gy, 800 Gy and 1000 Gy for 8 hours. (50 Gy) using the low level radiation facility ($Co^{60}$) of Cooperative Research Institute of Radiation Research Institute, KAERI. Fifty seeds were placed on each petri dish lined with wet filter paper and germination rate was measured at a time interval of 2 hours for 40 hrs. The length of the root length was measured one week after germination. Each treatment was carried out in 3 replicates. The growth of seedlings were investigated for 10 days after transplanting of 30 day-old seedlings. The plant height, NDVI, SPAD, Fv/Fm, and panicle weight were measured. The germination rate was highest at 50Gy and 0Gy and the rate of seeds treated with 400Gy or higher rate decreased to 25% of the seeds treated with 50Gy. The emergence rate of seedling in pot experiment was higher at the dose of 200 Gy, 300 Gy and 400 Gy than at 0 and 50Gy. However, the rate was lower at strong radiation higher than 600Gy at which $1^{st}$ leaf was not expanded fully and dead due to extreme overgrowth at 44 days after treatment (DAT). The highest value of panicle weight was observed at 50Gy (6.15g) and 100Gy (5.57g). On the other hand, the weight at high irradiated dose of 300Gy and 400Gy was decreased by about 55% compared to low dose (50 Gy). NDVI measurement also showed the highest value at 50 Gy as the growth progressed. SPAD was the highest at 400 Gy and showed positive correlation with irradiation dose except 0 Gy. Fv/Fm was high at 50 Gy up to 30 DAT and no difference between treatments was observed except for 400 Gy from 44 DAT. The plant height was the highest in 50Gy during the growing period and was higher in the order of 50Dy, 100Gy, 0Gy, 200Gy, 300Gy and 400Gy in 88 DAT. In this experiment, the optimal radiation dose for hormesis was 50Gy and 100Gy, and the optimal radiation dose for mutagenesis seems to be 400 Gy.

  • PDF