Browse > Article
http://dx.doi.org/10.5352/JLS.2021.31.10.913

Identification of Compound Heterozygous Alleles in a Patient with Autosomal Recessive Limb-Girdle Muscular Dystrophy  

Choi, Hee Ji (Department of Biological Sciences, Kongju National University)
Lee, Soo Bin (Department of Biological Sciences, Kongju National University)
Kwon, Hye Mi (Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine)
Choi, Byung-Ok (Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine)
Chung, Ki Wha (Department of Biological Sciences, Kongju National University)
Publication Information
Journal of Life Science / v.31, no.10, 2021 , pp. 913-921 More about this Journal
Abstract
Limb-girdle muscular dystrophy (LGMD) which is characterized by progressive muscle weakening of the hip and shoulder shows both dominant and recessive inheritances with many pathogenic genes including TTN. This study performed to identify genetic causes of a male patient with late onset (45 years old) autosomal recessive LGMD and atrial flutter. By application of the whole exome sequencing, we identified bi-allelic variants of TTN gene in the patient. One allele had a single missense variant of [c.24124G>T (p.V8042F)], while the other allele consisted of three missense variants of [c.29222G>C (p.R9741P) + c.67490A>G (p.H22497R) + c.75376C>T (p.R25126C)]. The p.V8042F allele was transmitted from his mother, while the other haplotype allele was putatively transmitted from his father. His two unaffected sons had only the p.R9741P. These variants have been not reported or rarely reported in the public human genome databases (1,000 Genome, gnomAD, and KRGDB). Most variants were located in the highly conserved immunoglobulin or fibronectin domains and were predicted to be pathogenic by the in silico analyses. The TTN giant protein plays a key role in muscle assembly, force transmission at the Z-line, and maintenance of resting tension in the I-band. In conclusion, we think that these bi-allelic compound heterozygous mutations may play a role as the genetic causes of the LGMD phenotype.
Keywords
Haplotype allele; limb-girdle muscular dystrophy (LGMD); myopathy; TTN; whole exome sequencing;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bashir, R., Britton, S., Strachan, T., Keers, S., Vafiadaki, E., Lako, M., Richard, I., Marchand, S., Bourg, N., Argov, Z., Sadeh, M., Mahjneh, I., Marconi, G., Passos-Bueno, M. R., Moreira Ede, S., Zatz, M., Beckmann, J. S. and Bushby, K. 1998. A gene related to Caenorhabditis elegans spermatogenesis factor fer-1 is mutated in limb-girdle muscular dystrophy type 2B. Nat. Genet. 20, 37-42.   DOI
2 Carmignac, V., Salih, M. A., Quijano-Roy, S., Marchand, S., Al Rayess, M. M., Mukhtar, M. M., Urtizberea, J. A., Labeit, S., Guicheney, P., Leturcq, F., Gautel, M., Fardeau, M., Campbell, K. P., Richard, I., Estournet, B. and Ferreiro, A. 2007. C-terminal titin deletions cause a novel early-onset myopathy with fatal cardiomyopathy. Ann. Neurol. 61, 340-351.   DOI
3 Chauveau, C., Bonnemann, C. G., Julien, C., Kho, A. L., Marks, H., Talim, B., Maury, P., Arne-Bes, M. C., Uro-Coste, E., Alexandrovich, A., Vihola, A., Schafer, S., Kaufmann, B., Medne, L., Hubner, N., Foley, A. R., Santi, M., Udd, B., Topaloglu, H., Moore, S. A., Gotthardt, M., Samuels, M. E., Gautel, M. and Ferreiro, A. 2014. Recessive TTN truncating mutations define novel forms of core myopathy with heart disease. Hum. Mol. Genet. 23, 980-991.   DOI
4 Gerull, B., Gramlich, M., Atherton, J., McNabb, M., Trombitas, K., Sasse-Klaassen, S., Seidman, J. G., Seidman, C., Granzier, H., Labeit, S., Frenneaux, M. and Thierfelder, L. 2002. Mutations of TTN, encoding the giant muscle filament titin, cause familial dilated cardiomyopathy. Nat. Genet. 30, 201-204.   DOI
5 Gilbreath, H. R., Castro, D. and Iannaccone, S. T. 2014. Congenital myopathies and muscular dystrophies. Neurol. Clin. 32, 689-703.   DOI
6 Hackman, P., Vihola, A., Haravuori, H., Marchand, S., Sarparanta, J., De Seze, J., Labeit, S., Witt, C., Peltonen, L., Richard, I. and Udd, B. 2002. Tibial muscular dystrophy is a titinopathy caused by mutations in TTN, the gene encoding the giant skeletal-muscle protein titin. Am. J. Hum. Genet. 71, 492-500.   DOI
7 Harms, M. B., Sommerville, R. B., Allred, P., Bell, S., Ma, D., Cooper, P., Lopate, G., Pestronk, A., Weihl, C. C. and Baloh, R. H. 2012. Exome sequencing reveals DNAJB6 mutations in dominantly-inherited myopathy. Ann. Neurol. 71, 407-416.   DOI
8 Lange, S., Xiang, F., Yakovenko, A., Vihola, A., Hackman, P., Rostkova, E., Kristensen, J., Brandmeier, B., Franzen, G., Hedberg, B., Gunnarsson, L. G., Hughes, S. M., Marchand, S., Sejersen, T., Richard, I., Edstrom, L., Ehler, E., Udd, B. and Gautel, M. 2005. The kinase domain of titin controls muscle gene expression and protein turnover. Science 308, 1599-1603.   DOI
9 Jang, J. Y., Park, Y., Jang, D. H., Jang, J. H. and Ryu, J. S. 2019. Two novel mutations in TTN of a patient with congenital myopathy: A case report. Mol. Genet. Genomic Med. 7, e866.
10 Labeit, S. and Kolmerer, B. 1995. Titins: giant proteins in charge of muscle ultrastructure and elasticity. Science 270, 293-296.   DOI
11 Leahy, D. J., Aukhil, I. and Erickson, H. P. 1996. 2.0 A crystal structure of a four-domain segment of human fibronectin encompassing the RGD loop and synergy region. Cell 84, 155-164.   DOI
12 Lim, L. E., Duclos, F., Broux, O., Bourg, N., Sunada, Y., Allamand, V., Meyer, J., Richard, I., Moomaw, C., Slaughter, C., Tome, F. M. S., Fardeau, M., Jackson, C. E., Beckmann, J. S. and Campbell, K. P. 1995. Beta-sarcoglycan: characterization and role in limb-girdle muscular dystrophy linked to 4q12. Nat. Genet. 11, 257-265.   DOI
13 Liu, J. S., Fan, L. L., Zhang, H., Liu, X., Huang, H., Tao, L. J., Xia, K. and Xiang, R. 2017. Whole-exome sequencing identifies two novel TTN mutations in Chinese families with dilated cardiomyopathy. Cardiology 136, 10-14.   DOI
14 Misaka, T., Yoshihisa, A. and Takeishi, Y. 2019. Titin in muscular dystrophy and cardiomyopathy: Urinary titin as a novel marker. Clin. Chim. Acta. 495, 123-128.   DOI
15 Brockington, M., Blake, D. J., Prandini, P., Brown, S. C., Torelli, S., Benson, M. A., Ponting, C. P., Estournet, B., Romero, N. B., Mercuri, E., Voit, T., Sewry, C. A., Guicheney, P. and Muntoni, F. 2001. Mutations in the fukutin-related protein gene (FKRP) cause a form of congenital muscular dystrophy with secondary laminin alpha-2 deficiency and abnormal glycosylation of alpha-dystroglycan. Am. J. Hum. Genet. 69, 1198-1209.   DOI
16 Nigro, V., Moreira, E. S., Piluso, G., Vainzof, M., Belsito, A., Politano, L., Puca, A. A., Passos-Bueno, M. R. and Zatz, M. 1996. Autosomal recessive limb-girdle muscular dystrophy, LGMD2F, is caused by a mutation in the delta-sarcoglycan gene. Nat. Genet. 14, 195-198.   DOI
17 Park, H. J., Lee, J. H., Kim, S. H., Hong, J. M., Shin, H. Y., Kim, S. M., Lee, J. H., Park, K. D. and Choi, Y. C. 2017. Clinical and pathological findings of a Korean family with pathogenic variants of the TTN gene. J. Clin. Neurol. 13, 116-118.   DOI
18 Petersen, T. E., Thogersen, H. C., Skorstengaard, K., VibePedersen, K., Sahl, P., Sottrup-Jensen, L. and Magnusson, S. 1983. Partial primary structure of bovine plasma fibronectin: three types of internal homology. Proc. Natl. Acad. Sci. USA. 80, 137-141.   DOI
19 Richard, I., Broux, O., Allamand, V., Fougerousse, F., Chiannilkulchai, N., Bourg, N., Brenguier, L., Devaud, C., Pasturaud, P., Roudaut, C., Hillaire, D., Passos-Bueno, M.-R., Zatz, M., Tischfield, J. A., Fardeau, M., Jackson, C. E., Cohen, D. and Beckmann, J. S. 1995. Mutations in the proteolytic enzyme calpain 3 cause limb-girdle muscular dystrophy type 2A. Cell 81, 27-40.   DOI
20 Frosk, P., Weiler, T., Nylen, E., Sudha, T., Greenberg, C. R., Morgan, K., Fujiwara, T. M. and Wrogemann, K. 2002. Limb-girdle muscular dystrophy type 2H associated with mutation in TRIM32, a putative E3-ubiquitin-ligase gene. Am. J. Hum. Genet. 70, 663-672.   DOI
21 Melia, M. J., Kubota, A., Ortolano, S., Vilchez, J. J., Gamez, J., Tanji, K., Bonilla, E., Palenzuela, L., Fernandez-Cadenas, I., Pristoupilova, A., Garcia-Arumi, E. andreu, A. L., Navarro, C., Hirano, M. and Marti, R. 2013. Limb-girdle muscular dystrophy 1F is caused by a microdeletion in the transportin 3 gene. Brain 136, 1508-1517.   DOI
22 Vieira, N. M., Naslavsky, M. S., Licinio, L., Kok, F., Schlesinger, D., Vainzof, M., Sanchez, N., Kitajima, J. P., Gal, L., Cavacana, N., Serafini, P. R., Chuartzman, S., Vasquez, C., Mimbacas, A., Nigro, V., Pavanello, R. C., Schuldiner, M., Kunkel, L. M. and Zatz, M. 2014. A defect in the RNA-processing protein HNRPDL causes limb-girdle muscular dystrophy 1G (LGMD1G). Hum. Mol. Genet. 23, 4103-4110.   DOI
23 Dabby, R., Sadeh, M., Hilton-Jones, D., Plotz, P., Hackman, P., Vihola, A., Udd, B. and Leshinsky-Silver, E. 2015. Adult onset limb-girdle muscular dystrophy - a recessive titinopathy masquerading as myositis. J. Neurol. Sci. 351, 120-123.   DOI
24 Sehnal, D., Bittrich, S., Deshpande, M., Svobodova, R., Berka, K., Bazgier, V., Velankar, S., Burley, S. K., Koca, J. and Rose, A. S. 2021. Mol* Viewer: modern web app for 3D visualization and analysis of large biomolecular structures. Nucleic Acids Res. 49, W431-W437.   DOI
25 Halaby, D. M., Poupon, A. and Mornon, J. 1999. The immunoglobulin fold family: sequence analysis and 3D structure comparisons. Protein. Eng. 12, 563-571.   DOI
26 Lee, A, J., Nam, D. E., Choi, Y. J., Nam, S. H., Choi, B. O. and Chung, K. W. 2020. Alanyl-tRNA synthetase 1 (AARS1) gene mutation in a family with intermediate Charcot-Marie-Tooth neuropathy. Genes Genomics 42, 663-672.   DOI
27 Bang, M. L., Centner, T., Fornoff, F., Geach, A. J., Gotthardt, M., McNabb, M., Witt, C. C., Labeit, D., Gregorio, C. C., Granzier, H. and Labeit, S. 2001. The complete gene sequence of titin, expression of an unusual approximately 700-kDa titin isoform, and its interaction with obscurin identify a novel Z-line to I-band linking system. Circ. Res. 89, 1065-1072.   DOI
28 Halaby, D. M. and Mornon, J. P. 1998. The immunoglobulin superfamily: an insight on its tissular, species, and functional diversity. J. Mol. Evol. 46, 389-400.   DOI
29 Yang, J. and Zhang, Y. 2015. I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Res. 1, W174-W181.   DOI
30 Shieh, P. B. 2013. Muscular dystrophies and other genetic myopathies. Neurol. Clin. 31, 1009-1029.   DOI
31 Zhang, Y. 2008. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 23, 40.   DOI
32 Zheng, W., Chen, H., Deng, X., Yuan, L., Yang, Y., Song, Z., Yang, Z., Wu, Y. and Deng, H. 2016. Identification of a novel mutation in the Titin gene in a Chinese family with limb-girdle muscular dystrophy 2J. Mol. Neurobiol. 53, 5097-5102.   DOI