• Title/Summary/Keyword: Genetic mutations

Search Result 655, Processing Time 0.025 seconds

Brain Somatic Mutations in Epileptic Disorders

  • Koh, Hyun Yong;Lee, Jeong Ho
    • Molecules and Cells
    • /
    • v.41 no.10
    • /
    • pp.881-888
    • /
    • 2018
  • During the cortical development, cells in the brain acquire somatic mutations that can be implicated in various neurodevelopmental disorders. There is increasing evidence that brain somatic mutations lead to sporadic form of epileptic disorders with previously unknown etiology. In particular, malformation of cortical developments (MCD), ganglioglioma (GG) associated with intractable epilepsy and non-lesional focal epilepsy (NLFE) are known to be attributable to brain somatic mutations in mTOR pathway genes and others. In order to identify such somatic mutations presenting as low-level in epileptic brain tissues, the mutated cells should be enriched and sequenced with high-depth coverage. Nevertheless, there are a lot of technical limitations to accurately detect low-level of somatic mutations. Also, it is important to validate whether identified somatic mutations are truly causative for epileptic seizures or not. Furthermore, it will be necessary to understand the molecular mechanism of how brain somatic mutations disturb neuronal circuitry since epilepsy is a typical example of neural network disorder. In this review, we overview current genetic techniques and experimental tools in neuroscience that can address the existence and significance of brain somatic mutations in epileptic disorders as well as their effect on neuronal circuitry.

Clinical and Laboratory Features to Consider Genetic Evaluation among Children and Adolescents with Short Stature

  • Seokjin Kang
    • Journal of Interdisciplinary Genomics
    • /
    • v.5 no.2
    • /
    • pp.18-23
    • /
    • 2023
  • Conventional evaluation method for identifying the organic cause of short stature has a low detection rate. If an infant who is small for gestational age manifests postnatal growth deterioration, triangular face, relative macrocephaly, and protruding forehead, a genetic testing of IGF2, H19, GRB10, MEST, CDKN1, CUL7, OBSL1, and CCDC9 should be considered to determine the presence of Silver-Russell syndrome and 3-M syndrome. If a short patient with prenatal growth failure also exhibits postnatal growth failure, microcephaly, low IGF-1 levels, sensorineural deafness, or impaired intellectual development, genetic testing of IGF1 and IGFALS should be conducted. Furthermore, genetic testing of GH1, GHRHR, HESX1, SOX3, PROP1, POU1F1, and LHX3 should be considered if patients with isolated growth hormone deficiency have short stature below -3 standard deviation score, barely detectable serum growth hormone concentration, and other deficiencies of anterior pituitary hormone. In short patients with height SDS <-3 and high growth hormone levels, genetic testing should be considered to identify GHR mutations. Lastly, when severe short patients (height z score <-3) exhibit high levels of prolactin and recurrent pulmonary infection, genetic testing should be conducted to identify STAT5B mutations.

Genetic Risk Prediction for Normal-Karyotype Acute Myeloid Leukemia Using Whole-Exome Sequencing

  • Heo, Seong Gu;Hong, Eun Pyo;Park, Ji Wan
    • Genomics & Informatics
    • /
    • v.11 no.1
    • /
    • pp.46-51
    • /
    • 2013
  • Normal-karyotype acute myeloid leukemia (NK-AML) is a highly malignant and cytogenetically heterogeneous hematologic cancer. We searched for somatic mutations from 10 pairs of tumor and normal cells by using a highly efficient and reliable analysis workflow for whole-exome sequencing data and performed association tests between the NK-AML and somatic mutations. We identified 21 nonsynonymous single nucleotide variants (SNVs) located in a coding region of 18 genes. Among them, the SNVs of three leukemia-related genes (MUC4, CNTNAP2, and GNAS) reported in previous studies were replicated in this study. We conducted stepwise genetic risk score (GRS) models composed of the NK-AML susceptible variants and evaluated the prediction accuracy of each GRS model by computing the area under the receiver operating characteristic curve (AUC). The GRS model that was composed of five SNVs (rs75156964, rs56213454, rs6604516, rs10888338, and rs2443878) showed 100% prediction accuracy, and the combined effect of the three reported genes was validated in the current study (AUC, 0.98; 95% confidence interval, 0.92 to 1.00). Further study with large sample sizes is warranted to validate the combined effect of these somatic point mutations, and the discovery of novel markers may provide an opportunity to develop novel diagnostic and therapeutic targets for NK-AML.

The first Korean case of Waardenburg-Shah syndrome with novel endothelin receptor type B mutations

  • Lee, Eun Sun;Ko, Jung Min;Moon, Jin Su
    • Journal of Genetic Medicine
    • /
    • v.14 no.2
    • /
    • pp.86-89
    • /
    • 2017
  • Waardenburg syndrome (WS) is a rare genetic disorder, including clinical features of pigmentary abnormalities of irides, skin, hair and sensorineural hearing loss and facial dysmorphism. Among the four types, WS type IV (Waardenburg-Shah syndrome) additionally represents Hirschsprung's disease. Mutations in the SOX10, END3, or EDNRB genes are known to cause WS type IV. Here, we report a 6 year-old girl who was diagnosed as WS type IV by typical clinical manifestations, including skin hypopigmentation, heterochromia of both irides, unilateral sensorineural hearing loss, mild developmental delay and Hirschsprung's disease. The diagnosis was confirmed by molecular genetic analysis of EDNRB. Two novel EDNRB mutations were identified, and each mutation was segregated from each of her parents. During the follow-up period, the patient underwent a surgery for spleen torsion and was medically managed due to recurrent enterocolitis. Also, she suffered from impaired immunity including Hirschsprung's associated enterocolitis.

A case with GRIN2A mutation and its non-neurological manifestations

  • Lee, Soo Yeon;Jung, So Yoon;Lee, Jeongho
    • Journal of Genetic Medicine
    • /
    • v.17 no.2
    • /
    • pp.79-82
    • /
    • 2020
  • In epilepsy-aphasia spectrum (EAS) disorders, mutations in the glutamate receptor ionotropic N-methyl-D-aspartate type subunit 2A (GRIN2A) have become important for screening the disease. Research into the phenotypic variability of several types of neurologic impairment involving these mutations is in progress. However, the non-neurological problems related to these mutations are poorly understood. EAS disorders usually have epileptic, cognitive, or behavioral manifestations. In this case report, we present a female patient with epilepsy, delay in expressive language and social development, and intellectual disability with low intelligence quotient and memory quotient, but normal motor development. Through genetic analysis, she was found to have a missense and a nonsense mutation in GRIN2A (c.1770A>C; p.Lys509Asn and c.3187G>T; p.Glu1063∗, respectively) and we consider the nonsense mutation as 'pathogenic variant'. She was also discovered to have congenital hypothyroidism, growth hormone deficiency and Rathke's cleft cyst in the brain, which were previously unknown features of GRIN2A mutation. Our findings should widen understanding of the spectrum of GRIN2A phenotypes, and emphasize the need for more research into the association between GRIN2A mutations and non-neurologic clinical presentations.

Synthetic Lethal Mutations with spmex67 of Schizosaccharomyces pombe in the Mediation of mRNA Export

  • Yoon, Jin-Ho
    • Journal of Microbiology
    • /
    • v.41 no.2
    • /
    • pp.115-120
    • /
    • 2003
  • Mex67p/Tap are evolutionally conserved mRNA export factors. To identify mutations in genes that are functionally linked to mex67 with respect to mRNA export, we used a synthetic lethal genetic screen in Schizosaccharomyces pombe. Three synthetic lethal mutants were isolated and mutations in these mutants defined separate complementation groups. These mutants exhibited the accumulation of poly A$\^$+/ RNA in the nucleus, with a decrease in the cytoplasm under synthetically lethal conditions, suggesting that the mutations cause an mRNA nuclear export defect. In addition, the S. pombe genes that were found to be involved in mRNA export did not suppress the synthetic lethality of these mutants. These results indicate that the isolated mutants contain mutations in new genes, which are involved in mRNA export from the nucleus.

Tyrosine 1045 Codon Mutations in Exon 27 of EGFR are Infrequent in Oral Squamous Cell Carcinomas

  • Tushar, Mehta Dhaval;Ramanathan, Arvind
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.7
    • /
    • pp.4279-4282
    • /
    • 2013
  • Background: The activation and inactivation of receptor tyrosine kinases are tightly regulated to ensure faithful replication of cells. After having transduced extracellular growth activating signals, activated EGFR is subjected to downregulation either by clathrin mediated endocytosis or c-Cbl mediated proteasome degradation depending on the ligand concentration. c-Cbl is an ubiquitin ligase which requires a phosphorylated tyrosine residue at position 1045 in the cytoplasmic domain of EGFR to interact and add ubiquitin molecules. While activating mutations in exons 19 and 21 have been associated with the development of several cancers, the status of mutations at tyrosine 1045 coding exon 27 of EGFR remain to be investigated. Consistently, defective phosphorylation at 1045 has been associated with sustained phosphorylation of EGFR in non-small lung carcinomas. Hence in the present study we investigated the genetic status of the tyrosine 1045 coding site within exon 27 of EGFR gene to explore for possible occurrence of mutations in this region, especially since no studies have addressed this issue so far. Materials and Methods: Tumor chromosomal DNA isolated from thirty five surgically excised oral squamous cell carcinoma tissues was subjected to PCR amplification with intronic primers flanking the tyrosine 1045 coding exon 27 of EGFR gene. The PCR amplicons were subsequently subjected to direct sequencing to elucidate the mutation status. Results: Sequence analysis identified no mutations in the tyrosine 1045 codon of EGFR in any of the thirty five samples that were analyzed. Conclusions: The lack of identification of mutation in the tyrosine 1045 codon of EGFR suggests that mutations in this region may be relatively rare in oral squamous cell carcinomas. To the best of our knowledge, this study is the first to have explored the genetic status of exon 27 of EGFR in oral squamous cell carcinoma tissue samples.

Two cases of Antley-Bixler syndrome caused by mutations in different genes, FGFR2 and POR

  • Woo, Hyewon;Ko, Jung Min;Shin, Choong Ho;Yang, Sei Won
    • Journal of Genetic Medicine
    • /
    • v.13 no.1
    • /
    • pp.31-35
    • /
    • 2016
  • Antley-Bixler syndrome (ABS) is a rare form of syndromic craniosynostosis with additional systemic synostosis, including radiohumeral or radioulnar synostosis. Another characteristic feature of ABS is mid-facial hypoplasia that leads to airway narrowing after birth. ABS is associated with mutations in the FGFR2 and POR genes. Patients with POR mutations present with either skeletal manifestations or congenital adrenal hyperplasia with ambiguous genitalia. We report here two cases of ABS caused by mutations in FGFR2 and POR. Although the patients had craniosynostosis and radiohumeral synostosis in common and cranioplasty was performed in both cases, the male with POR mutations showed an elevated level of $17{\alpha}$-hydroxyprogesterone during newborn screening and was diagnosed with congenital adrenal hyperplasia by adrenocorticotropic hormone stimulation. This patient has been treated with hydrocortisone and fludrocortisone. He had no ambiguous genitalia but had bilateral cryptorchidism. On the other hand, the female with the FGFR2 mutation showed severe clinical manifestations: upper airway narrowing leading to tracheostomy, kyphosis of the cervical spine, and coccyx deformity. ABS shows locus heterogeneity, and mutations in two different genes can cause similar craniofacial and skeletal phenotypes. Because the long-term outcomes and inheritance patterns of the disease differ markedly, depending on the causative mutation, early molecular genetic testing is helpful.

BRCA1 Gene Exon 11 Mutations in Uighur and Han Women with Early-onset Sporadic Breast Cancer in the Northwest Region of China

  • Cao, Yu-Wen;Fu, Xin-Ge;Wan, Guo-Xing;Yu, Shi-Ying;Cui, Xiao-Bin;Li, Li;Jiang, Jin-Fang;Zheng, Yu-Qin;Zhang, Wen-Jie;Li, Feng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.11
    • /
    • pp.4513-4518
    • /
    • 2014
  • The prevalence of BRCA1 gene mutations in breast cancer differs between diverse ethnic groups. Relatively little information is known about patterns of BRCA1 mutations in early-onset breast cancer in women of Uighur or Han descent, the major ethnic populations of the Xinjiang region in China. The aim of this study was to identify BRCA1 mutations in Uighur and Han patients with early-onset (age <35 years), and sporadic breast cancer for genetic predisposition to breast cancer. For detection of BRCA1 mutations, we used a polymerase chain reaction single-stranded conformation polymorphism approach, followed by direct DNA sequencing in 22 Uighur and 13 Han women with early-onset sporadic breast cancer, and 32 women with benign breast diseases. The prevalence of BRCA1 mutations in this population was 22.9% (8/35) among early-onset sporadic breast cancer cases. Of these, 31.8% (7/22) of Uighur patients and 7.69% (1/13) of Han patients were found to have BRCA1 mutations. In 7 Uighur patients with BRCA1 mutations, there were 11 unique sequence alterations in the BRCA1 gene, including 4 clearly disease-associated mutations on exon 11 and 3 variants of uncertain clinical significance on exon 11, meanwhile 4 neutral variants on intron 20 or 2. None of the 11 BRCA1 mutations identified have been previously reported in the Breast Cancer Information Core database. These findings reflect the prevalence of BRCA1 mutations in Uighur women with early-onset and sporadic breast cancer, which will allow for provision of appropriate genetic counseling and treatment for Uighur patients in the Xinjiang region.

Genetics of hereditary nephrotic syndrome: a clinical review

  • Ha, Tae-Sun
    • Clinical and Experimental Pediatrics
    • /
    • v.60 no.3
    • /
    • pp.55-63
    • /
    • 2017
  • Advances in podocytology and genetic techniques have expanded our understanding of the pathogenesis of hereditary steroid-resistant nephrotic syndrome (SRNS). In the past 20 years, over 45 genetic mutations have been identified in patients with hereditary SRNS. Genetic mutations on structural and functional molecules in podocytes can lead to serious injury in the podocytes themselves and in adjacent structures, causing sclerotic lesions such as focal segmental glomerulosclerosis or diffuse mesangial sclerosis. This paper provides an update on the current knowledge of podocyte genes involved in the development of hereditary nephrotic syndrome and, thereby, reviews genotype-phenotype correlations to propose an approach for appropriate mutational screening based on clinical aspects.