Browse > Article
http://dx.doi.org/10.14348/molcells.2018.0247

Brain Somatic Mutations in Epileptic Disorders  

Koh, Hyun Yong (Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST))
Lee, Jeong Ho (Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST))
Abstract
During the cortical development, cells in the brain acquire somatic mutations that can be implicated in various neurodevelopmental disorders. There is increasing evidence that brain somatic mutations lead to sporadic form of epileptic disorders with previously unknown etiology. In particular, malformation of cortical developments (MCD), ganglioglioma (GG) associated with intractable epilepsy and non-lesional focal epilepsy (NLFE) are known to be attributable to brain somatic mutations in mTOR pathway genes and others. In order to identify such somatic mutations presenting as low-level in epileptic brain tissues, the mutated cells should be enriched and sequenced with high-depth coverage. Nevertheless, there are a lot of technical limitations to accurately detect low-level of somatic mutations. Also, it is important to validate whether identified somatic mutations are truly causative for epileptic seizures or not. Furthermore, it will be necessary to understand the molecular mechanism of how brain somatic mutations disturb neuronal circuitry since epilepsy is a typical example of neural network disorder. In this review, we overview current genetic techniques and experimental tools in neuroscience that can address the existence and significance of brain somatic mutations in epileptic disorders as well as their effect on neuronal circuitry.
Keywords
epileptogenesis; epilepsy; next generation sequencing; somatic mutation; network;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lim, J.S., Gopalappa, R., Kim, S.H., Ramakrishna, S., Lee, M., Kim, W.I., Kim, J., Park, S.M., Lee, J., Oh, J.H., Kim, H.D. (2017). Somatic Mutations in TSC1 and TSC2 Cause Focal Cortical Dysplasia. Am. J. Hum. Genet. 100, 454-472.   DOI
2 Lim, J.S., Kim, W.I., Kang, H.C., Kim, S.H., Park, A.H., Park, E.K., Cho, Y.W., Kim, S., Kim, H.M., Kim, J.A., et al. (2015). Brain somatic mutations in MTOR cause focal cortical dysplasia type II leading to intractable epilepsy. Nat. Med. 21, 395-400.   DOI
3 Lodato, M.A., Rodin, R.E., Bohrson, C.L., Coulter, M.E., Barton, A.R., Kwon, M., Sherman, M.A., Vitzthum, C.M., Luquette, L.J., Yandava, C.N., et al. (2018). Aging and neurodegeneration are associated with increased mutations in single human neurons. Science, 359, 555-559.   DOI
4 Loscher, W. (2011). Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs. Seizure, 20(5), 359-368.   DOI
5 Ribierre, T., Deleuze, C., Bacq, A., Baldassari, S., Marsan, E., Chipaux, M., Muraca G., Roussel, D., Navarro, V., Leguern, E., et al. (2018). Second-hit mosaic mutation in mTORC1 repressor DEPDC5 causes focal cortical dysplasia-associated epilepsy. J. Clin. Invest. 128, 2452-2458.   DOI
6 Roth, B.L. (2016). DREADDs for Neuroscientists. Neuron 89, 683-694.   DOI
7 Schirmer, M., Ijaz, U.Z., D'Amore, R., Hall, N., Sloan, W.T., and Quince, C. (2015). Insight into biases and sequencing errors for amplicon sequencing with the Illumina MiSeq platform. Nucleic Acids Res. 43, e37.   DOI
8 Shinmyo, Y., and Kawasaki, H. (2017). CRISPR/Cas9-Mediated Gene Knockout in the Mouse Brain Using In Utero Electroporation. Curr. Protoc. Neurosci 79, 3. 32.1-3.32.11.
9 Shirley, M.D., Tang, H., Gallione, C.J., Baugher, J.D., Frelin, L.P., Cohen, B., North, P.E., Marchuk, D.A., Comi, A.M., and Pevsner, J. (2013). Sturge-Weber syndrome and port-wine stains caused by somatic mutation in GNAQ. N Engl. J. Med. 368, 1971-1979.   DOI
10 Singh, A., and Trevick, S. (2016). The Epidemiology of Global Epilepsy. Neurol. Clin. 34, 837-847.   DOI
11 Stead, L.F., Sutton, K.M., Taylor, G.R., Quirke, P., and Rabbitts, P. (2013). Accurately identifying low-allelic fraction variants in single samples with next-generation sequencing: applications in tumor subclone resolution. Hum. Mutat. 34, 1432-1438.   DOI
12 Tezer, F.I., Akalan, N., Oguz, K.K., Karabulut, E., Dericioglu, N., Ciger, A., and Saygi, S. (2008). Predictive factors for postoperative outcome in temporal lobe epilepsy according to two different classifications. Seizure 17, 549-560.   DOI
13 Tian, G.F., Azmi, H., Takano, T., Xu, Q., Peng, W., Lin, J., Oberheim, N., Lou, N., Wang, X., Zielke, H.R., et al. (2005). An astrocytic basis of epilepsy. Nat. Med. 11, 973-981.   DOI
14 Grabiner, B.C., Nardi, V., Birsoy, K., Possemato, R., Shen, K., Sinha, S., Jordan, A., Beck, A.H., and Sabatini, D.M. (2014). A diverse array of cancer-associated MTOR mutations are hyperactivating and can predict rapamycin sensitivity. Cancer Discov. 4, 554-563.   DOI
15 Evrony, G.D., Cai, X., Lee, E., Hills, L.B., Elhosary, P.C., Lehmann, H.S., Parker, J.J., Atabay, K.D., Gilmore, E.C., Poduri, A., et al. (2012). Single-neuron sequencing analysis of L1 retrotransposition and somatic mutation in the human brain. Cell 151, 483-496.   DOI
16 Ferrea, E., Maccione, A., Medrihan, L., Nieus, T., Ghezzi, D., Baldelli, P., Benfenati F., and Berdondini, L. (2012). Large-scale, high-resolution electrophysiological imaging of field potentials in brain slices with microelectronic multielectrode arrays. Front Neural Circuits 6, 80.
17 Gaudelli, N.M., Komor, A.C., Rees, H.A., Packer, M.S., Badran, A.H., Bryson, D.I., and Liu, D.R. (2017). Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature 551, 464-471.   DOI
18 Hildebrand, M.S., Dahl, H.H., Damiano, J.A., Smith, R.J., Scheffer, I.E., and Berkovic, S.F. (2013). Recent advances in the molecular genetics of epilepsy. J. Med. Genet. 50, 271-279.   DOI
19 Insel, T.R. (2014). Brain somatic mutations: the dark matter of psychiatric genetics? Mol. Psychiatry 19, 156-158.   DOI
20 Jamuar, S.S., Lam, A.T., Kircher, M., D'Gama, A.M., Wang, J., Barry, B.J., Zhang, X, Hill, R.S., Partlow, J.N., Rozzo, A., et al. (2014). Somatic mutations in cerebral cortical malformations. N. Engl. J. Med. 371, 733-743.   DOI
21 Moller, R.S., Weckhuysen, S., Chipaux, M., Marsan, E., Taly, V., Bebin, E.M., Hiatt S.M., Prokop, J.W., Bowling, K.M., Mei, D., et al. (2016). Germline and somatic mutations in the MTOR gene in focal cortical dysplasia and epilepsy. Neurol Genet. 2, e118.   DOI
22 Loscher, W., Klitgaard, H., Twyman, R.E., and Schmidt, D. (2013). New avenues for anti-epileptic drug discovery and development. Nat. Rev. Drug Discov. 12(10), 757-776.   DOI
23 McConnell, M.J., Moran, J.V., Abyzov, A., Akbarian, S., Bae, T., Cortes-Ciriano, I., Erwin, J.A., Fasching, L., Flasch, D.A., Freed, D., et al. (2017). Intersection of diverse neuronal genomes and neuropsychiatric disease: The Brain Somatic Mosaicism Network. Science 356,
24 Mirzaa, G.M., Campbell, C.D., Solovieff, N., Goold, C., Jansen, L.A., Menon, S., Timms, A.E., Conti, V., Biag, J.D., Adams, C., et al. (2016). Association of MTOR mutations with developmental brain disorders, including megalencephaly, focal cortical dysplasia, and pigmentary mosaicism. JAMA Neurol. 73, 836-845.   DOI
25 Myers, C.T., and Mefford, H.C. (2015). Advancing epilepsy genetics in the genomic era. Genome Med. 7, 91.   DOI
26 Jansen, L.A., Mirzaa, G.M., Ishak, G.E., O'Roak, B.J., Hiatt, J.B., Roden, W.H., Gunter, S.A., Christian, S.L., Collins, S., Adams, C., et al. (2015). PI3K/AKT pathway mutations cause a spectrum of brain malformations from megalencephaly to focal cortical dysplasia. Brain, 138(Pt 6), 1613-1628.   DOI
27 Winawer, M.R., Griffin, N.G., Samanamud, J., Baugh, E.H., Rathakrishnan, D., Ramalingam, S., Zagzag, D., Schevon, C.A., Dugan, P., Hegde, M., et al. (2018). Somatic SLC35A2 variants in the brain are associated with intractable neocortical epilepsy. Ann. Neurol. 83, 1133-1146.   DOI
28 Xu, H., DiCarlo, J., Satya, R.V., Peng, Q., and Wang, Y. (2014). Comparison of somatic mutation calling methods in amplicon and whole exome sequence data. BMC Genomics 15, 244.   DOI
29 Xu, J., Pham, C.G., Albanese, S.K., Dong, Y., Oyama, T., Lee, C.H., Rodrik-Outmezguine, V., Yao, J., Han, S., Chen, D., et al. (2016). Mechanistically distinct cancer-associated mTOR activation clusters predict sensitivity to rapamycin. J. Clin. Invest. 126, 3526-3540.   DOI
30 Schindler, G., Capper, D., Meyer, J., Janzarik, W., Omran, H., Herold-Mende, C., Schmieder, K., Wesseling, P., Mawrin, C., Hasselblatt, M., et al. (2011). Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol. 121, 397-405.   DOI
31 Nakashima, M., Miyajima, M., Sugano, H., Iimura, Y., Kato, M., Tsurusaki, Y., Miyake, N., Saitsu, H., Arai, H., and Matsumoto, N. (2014). The somatic GNAQ mutation c.548G>A (p.R183Q) is consistently found in Sturge-Weber syndrome. J. Hum. Genet. 59, 691-693.   DOI
32 Nakashima, M., Saitsu, H., Takei, N., Tohyama, J., Kato, M., Kitaura, H., Shiina, M., Shirozu, H., Masuda, H., Watanabe, K., et al. (2015). Somatic Mutations in the MTOR gene cause focal cortical dysplasia type IIb. Ann. Neurol. 78, 375-386.   DOI
33 Nikolaev, S.I., Vetiska, S., Bonilla, X., Boudreau, E., Jauhiainen, S., Rezai Jahromi, B., Khyzha, N., DiStefano, P.V., Suutarinen, S., Kiehl, T.R., et al. (2018). Somatic activating KRAS mutations in arteriovenous malformations of the brain. N. Engl. J. Med. 378, 250-261.   DOI
34 Perry, M.S., and Duchowny, M. (2013). Surgical versus medical treatment for refractory epilepsy: outcomes beyond seizure control. Epilepsia 54, 2060-2070.   DOI
35 Pinault, D. (2003). Cellular interactions in the rat somatosensory thalamocortical system during normal and epileptic 5-9 Hz oscillations. J. Physiol. 552(Pt 3), 881-905.   DOI
36 Poduri, A., Evrony, G.D., Cai, X., Elhosary, P.C., Beroukhim, R., Lehtinen, M.K., Hills, L.B., Heinzen, E.L., Hill, A., Hill, R.S., et al. (2012). Somatic activation of AKT3 causes hemispheric developmental brain malformations. Neuron 74, 41-48.   DOI
37 Quail, M.A., Smith, M., Coupland, P., Otto, T.D., Harris, S.R., Connor, T.R., Bertoni, A., Swerdlow, H.P., and Gu, Y. (2012). A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics 13, 341.   DOI
38 Bae, T., Tomasini, L., Mariani, J., Zhou, B., Roychowdhury, T., Franjic, D., Pletikos, M., Pattni, R., Chen, B.J., Venturini, E., et al. (2018). Different mutational rates and mechanisms in human cells at pregastrulation and neurogenesis. Science 359, 550-555.   DOI
39 Alcantara, D., Timms, A.E., Gripp, K., Baker, L., Park, K., Collins, S., Cheng, C., Stewart, F., Mehta, S.G., Saggar, A., et al. (2017). Mutations of AKT3 are associated with a wide spectrum of developmental disorders including extreme megalencephaly. Brain 140, 2610-2622.   DOI
40 Allen, A.S., Berkovic, S.F., Cossette, P., Delanty, N., Dlugos, D., Eichler, E.E., Epstein M.P., Glauser, T., Goldstein, D.B., Han, Y., et al. (2013). De novo mutations in epileptic encephalopathies. Nature 501, 217-221.   DOI
41 Bargmann, C.I., and Marder, E. (2013). From the connectome to brain function. Nat. Methods 10, 483-490.   DOI
42 Barkovich, A.J., Kuzniecky, R.I., Dobyns, W.B., Jackson, G.D., Becker, L.E., and Evrard, P. (1996). A classification scheme for malformations of cortical development. Neuropediatrics 27, 59-63.   DOI
43 Bassett, D.S., and Sporns, O. (2017). Network neuroscience. Nat. Neurosci. 20, 353-364.   DOI
44 Lee, J.H. (2016). Somatic mutations in disorders with disrupted brain connectivity. Exp. Mol. Med. 48, e239.   DOI
45 Kim, J., Kim, D., Lim, J.S., Maeng, J.H., Son, H., Kang, H.-C., Nam, H., Lee, J.H., and Kim, S. (2017). Accurate detection of low-level somatic mutations with technical replication for next-generation sequencing. bioRxiv. doi: https://doi.org/10.1101/179713.   DOI
46 Koh, H.Y., Kim, S.H., Jang, J., Kim, H., Han, S., Lim, J.S., Son, G., Choi, J., Park, B.O., Do Heo, W., et al. (2018). BRAF somatic mutation contributes to intrinsic epileptogenicity in pediatric brain tumors. Nat. Med.
47 Krook-Magnuson, E., Armstrong, C., Oijala, M., and Soltesz, I. (2013). On-demand optogenetic control of spontaneous seizures in temporal lobe epilepsy. Nat. Commun. 4, 1376.   DOI
48 Lee, J.H., Huynh, M., Silhavy, J.L., Kim, S., Dixon-Salazar, T., Heiberg, A., Scott, E., Bafna, V., Hill, K.J., Collazo, A., et al. (2012). De novo somatic mutations in components of the PI3K-AKT3-mTOR pathway cause hemimegalencephaly. Nat. Genet. 44, 941-945.   DOI
49 Leventer, R.J., Scerri, T., Marsh, A.P., Pope, K., Gillies, G., Maixner, W., MacGregor, D., Harvey, A.S., Delatycki, M.B., Amor, D.J., et al. (2015). Hemispheric cortical dysplasia secondary to a mosaic somatic mutation in MTOR. Neurology 84, 2029-2032.   DOI
50 Lim, E.T., Uddin, M., De Rubeis, S., Chan, Y., Kamumbu, A.S., Zhang, X., D'Gama, A.M., Kim, S,N., Hill, R.S., Goldberg, A.P., et al. (2017). Rates, distribution and implications of postzygotic mosaic mutations in autism spectrum disorder. Nat. Neurosci. 20, 1217-1224.   DOI
51 Katzel, D., Nicholson, E., Schorge, S., Walker, M.C., and Kullmann, D.M. (2014). Chemical-genetic attenuation of focal neocortical seizures. Nat Commun, 5, 3847.   DOI
52 Crino, P.B. (2009). Focal brain malformations: seizures, signaling, sequencing. Epilepsia 50 Suppl 9, 3-8.
53 Blumcke, I., Aronica, E., Becker, A., Capper, D., Coras, R., Honavar, M., Jacques, T.S., Kobow, K., Miyata, H., Muhlebner, A., et al. (2016). Low-grade epilepsy-associated neuroepithelial tumours - the 2016 WHO classification. Nat. Rev. Neurol. 12, 732-740.   DOI
54 Briellmann, R.S., Torn-Broers, Y., and Berkovic, S.F. (2001). Idiopathic generalized epilepsies: do sporadic and familial cases differ? Epilepsia 42, 1399-1402.
55 Chen, L., Liu, P., Evans, T.C., Jr., and Ettwiller, L.M. (2017). DNA damage is a pervasive cause of sequencing errors, directly confounding variant identification. Science 355, 752-756. doi:10.1126/science.aai8690   DOI
56 Chin, L., Andersen, J.N., and Futreal, P.A. (2011). Cancer genomics: from discovery science to personalized medicine. Nat. Med. 17, 297-303.   DOI
57 Crawford, P.M., West, C.R., Chadwick, D.W., and Shaw, M.D. (1986). Arteriovenous malformations of the brain: natural history in unoperated patients. J. Neurol Neurosurg. Psychiatry 49, 1-10.   DOI
58 D'Gama, A.M., Geng, Y., Couto, J.A., Martin, B., Boyle, E.A., LaCoursiere, C.M., Hossain, A., Hatem, N.E., Barry, B.J., Kwiatkowski, D.J., et al. (2015). Mammalian target of rapamycin pathway mutations cause hemimegalencephaly and focal cortical dysplasia. Ann. Neurol. 77, 720-725.   DOI
59 D'Gama, A.M., Woodworth, M.B., Hossain, A.A., Bizzotto, S., Hatem, N.E., LaCoursiere, C.M., Najm, I., Ying, Z., Yang, E., Barkovich, A.J., et al. (2017). Somatic mutations activating the mTOR pathway in dorsal telencephalic progenitors cause a continuum of cortical dysplasias. Cell Rep. 21, 3754-3766.   DOI
60 DeFelipe, J. (2010). From the connectome to the synaptome: an epic love story. Science 330, 1198-1201.   DOI
61 Deisseroth, K. (2011). Optogenetics. Nat. Methods 8, 26-29.   DOI