• Title/Summary/Keyword: Genetic integrity

Search Result 79, Processing Time 0.032 seconds

Studies on Genetic Stability of Micropropagated Plants and, Reintroduction in an Endemic and Endangered Taxon: Syzygium travancoricum Gamble (Myrtacae)

  • Ajith Anand
    • Journal of Plant Biotechnology
    • /
    • v.5 no.4
    • /
    • pp.201-207
    • /
    • 2003
  • Tissue culture techniques arguably are an important approach for ex situ conservation of rare and endangered plant species. However, there is utmost importance on maintaining the genetic integrity of the introduced plants especially in tree species. To examine the genetic integrity of the micropropagated plants, we randomly screened few hardened plants of Syzygium travancoricum, a critically endangered tree taxon, using Randomly Amplified Polymorphic DNA (RAPD) markers. Twenty-three random. primers were tried and twenty-five polymorphic loci were identified. The dendrogram based on the Unweighted Pair-Group Method Arithmetic Average and Nei's similarity index depicted about 97% homology between the mother plants and micropropagated plants. Further, an attempt was made to reintroduce the micropropagated plants in the wild. Over three hundred small trees could be successfully established.

Effect of Monothioglycerol on ROS Inhibition, Mitochondrial Activity, and DNA Integrity in Frozen-thawed Miniature Pig Sperm (Monothiolglycerol이 동결 융해 후 미니돼지 정자의 활성산소 억제, 미토콘드리아 활성 그리고 DNA Integrity에 미치는 영향)

  • Park, Soo-Jung;Kim, Dae-Young
    • Journal of Embryo Transfer
    • /
    • v.28 no.3
    • /
    • pp.265-271
    • /
    • 2013
  • Cryopreservation and in vitro fertilization (IVF) protocols are important in genetic studies and applications to transgenic animals. Various studies about boar sperm cryopreservation have been studied for a long time. Those were about the use of extenders, the choice of sugars, the cooling and warming rates. The factors that influence the boar sperm are the dramatic changes in temperatures, osmotic and toxic stresses, and reactive oxygen species (ROS) generation. Among these factors, ROS generation is the main damage to DNA which is a principal genetic material and the most important for the practical applications. So we wondered whether ROS generation could be reduced. In previous study, monothioglycerol (MTG) was essential for the culture of embryo stem cells. Therefore we added MTG in the freezing extender based on lactose-egg yolk (LEY) with trehalose. For the assessment of the frozen-thawed sperm, we focused onmotility, membrane integrity and DNA damage. First, we used a computer-aided sperm analysis system for overall conditions of sperm such as motility and viability. Then we performed the sperm chromatin structure assay for DNA integrity and hypo-osmotic swelling test for membrane integrity. And our result showed the existence of MTG in the freezing extender caused less damage to DNA and higher motility in frozen-thawed boar sperm. Also we checked a relative antioxidant activity of MTG in modified Modena B extender. We concluded that this reagent can activate sperm mitochondria at MTG $0.2{\mu}M$, contribute to sperm motility and DNA integrity but there was no significant difference on membrane integrity. Also antioxidant activity of MTG in modified Modena B extender was proved.

Evaluation of rooster semen quality using CBB dye based staining method

  • Kim, Sung Woo;Lee, Jae-Yeong;Kim, Chan-Lan;Ko, Yeong Gyu;Kim, Bongki
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.37 no.1
    • /
    • pp.55-61
    • /
    • 2022
  • The acrosome cap allows sperm to penetrate the egg membrane and produce male pronuclei within female chicken eggs, facilitating successful fertilization. Given this, it is important to establish practical methods for evaluating the integrity of the acrosome cap and thus the quality of the rooster's sperm. There are several established methods for evaluating the acrosomes of mammalian sperm, but none of these methods are suitable for evaluating the acrosome status of rooster spermatozoa. Therefore, a simplified method for evaluating the rooster acrosome is needed. Here we evaluated the usefulness of CBB (coomassie brilliant blue) staining of the acrosome at concentrations of 0.04%, 0.08%, and 0.3% CBB solutions. Our data revealed a clear staining pattern for intact acrosome caps at 0.04% and 0.08% CBB but not at 0.3% CBB. This protocol revealed differences in acrosome integrity between fresh and frozen rooster sperm smears suggesting that CBB staining may facilitate easier semen evaluation in roosters. This protocol allows for the accurate differential staining of acrosome cap in rooster spermatozoa.

Probabilistic Damage Mechanics Assessment of CANDU Pressure Tube using Genetic Algorithm (유전자 알고리즘을 이용한 CANDU 압력관의 확률론적 손상역학 평가)

  • Ko, Han-Ok;Chang, Yoon-Suk;Choi, Jae-Boong;Kim, Young-Jin;Kim, Hong-Key;Choi, Young-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.192-192
    • /
    • 2008
  • As the lifetime of nuclear power plants (NPPs) reaches design life, the probability for fatal accidents increases. Most of accidents are known to be caused by degradation of mechanical components. Pressure tubes are the most important components in CANDU reactor. They are subjected to various aging mechanisms such as delayed hydride cracking (DHC), irradiation and corrosion, etc. Therefore, the integrity of pressure tube is key concern in CANDU reactor. Up to recently, conventional deterministic approaches have been utilized to evaluate the integrity of components. However, there are many uncertainties to prevent a rational evaluation. The objective of this paper is to assess the failure probability of pressure tube in CANDU. To do this, probability fracture mechanics (PFM) analysis based on the Genetic Algorithm (GA) is performed. For the verification of the analysis, a comparison of the PFM analysis using a commercial code and mathematical method is carried out.

  • PDF

Nail DNA and Possible Biomarkers: A Pilot Study

  • Park, Joshua;Liang, Debbie;Kim, Jung-Woo;Luo, Yongjun;Huang, Taesheng;Kim, Soo-Young;Chang, Seong-Sil
    • Journal of Preventive Medicine and Public Health
    • /
    • v.45 no.4
    • /
    • pp.235-243
    • /
    • 2012
  • Objectives: Nail has been a substitute DNA source for genotyping. To investigate the integrity and consistency of nail DNA amplification for biomarker study, nail clippings from 12 subjects were collected at monthly intervals. The possibility of longer amplification and existence of GAPDH RNA/protein, were also investigated with three nail samples. Methods: Three primer sets were designed for quantitative amplification of nuclear and mitochondrial genes and analysis of their consistency. The mean threshold cycles in amplification of the target genes were compared to test the consistency of polymerase chain reaction (PCR) performance among individual factors including age groups, sex, family, the nail source, and by the size of the amplification segments. Results: The amplification of the target genes from nail DNA showed similar integrity and consistency between the nail sources, and among the serial collections. However, nail DNA from those in their forties showed earlier threshold cycles in amplification than those in their teens or seventies. Mitochondrial DNA (mtDNA) showed better DNA integrity and consistency in amplification of all three targets than did nuclear DNA (nucDNA). Over 9 kb of mtDNA was successfully amplified, and nested quantitative PCR showed reliable copy numbers (%) between the two loci. Reverse transcription PCR for mRNA and immunoblotting for GAPDH protein successfully reflected their corresponding amounts. Regarding the existence of RNA and protein in nails, more effective extraction and detection methods need to be set up to validate the feasibility in biomarker study. Conclusions: Nail DNA might be a feasible intra-individual monitoring biomarker. Considering integrity and consistency in target amplification, mtDNA would be a better target for biomarker research than nucDNA.

Determination of optimal Conditions for a Gas Metal Arc Wending Process Using the Genetic Algorithm

  • Kim, D.;Rhee, S.
    • International Journal of Korean Welding Society
    • /
    • v.1 no.1
    • /
    • pp.44-50
    • /
    • 2001
  • A genetic algorithm was applied to the arc welding process as to determine the near-optimal settings of welding process parameters that produce the good weld quality. This method searches for optimal settings of welding parameters through the systematic experiments without the need for a model between the input and output variables. It has an advantage of being capable to find the optimal conditions with a fewer number of experiments rather than conventional full factorial designs. A genetic algorithm was applied to the optimization of the weld bead geometry. In the optimization problem, the input variables were wire feed rate, welding voltage, and welding speed. The output variables were the bead height bead width, and penetration. The number of levels for each input variable is 16, 16, and 8, respectively. Therefore, according to the conventional full factorial design, in order to find the optimal welding conditions,2048 experiments must be performed. The genetic algorithm, however, found the near optimal welding conditions in less than 40 experiments.

  • PDF

Revolution of Dead-Cell: Production of New Generation by Intracytoplasmic Dried-Sperm Injection in Mammal

  • Kim, Duk-Im;Kim, Chang Jin;Lee, Kyung-Bon
    • Reproductive and Developmental Biology
    • /
    • v.39 no.3
    • /
    • pp.69-76
    • /
    • 2015
  • In a conventional sense, dried-spermatozoa are all dead and motionless due to the lost of their natural ability to penetrate oocytes both in vivo and in vitro. However, their nuclei are completely able to contribute to normal embryonic development even after long-term preservation in a dried state when the dried-spermatozoa are microinjected into the oocytes. In this sense, dried spermatozoa must still be alive. Thus, defining spermatozoa as alive or dead seems rather arbitrary. Several drying method of sperm including freeze-drying, evaporative/convective-drying and heat-drying were represented in this review. Although the drying protocol reported here will need further improvement, the results suggest that it may be possible to store the male genetic resources.

Optimization of Machining Process Using an Adaptive Modeling and Genetic Algorithms(1) -Simulation Study- (적응 모델링과 유전알고리듬을 이용한 절삭공정의 최적화(I) -모의해석-)

  • Ko, Tae Jo;Kim, Hee Sool;Kim, Do Gyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.11
    • /
    • pp.73-81
    • /
    • 1996
  • This paper presents a general procedure for the selection of the machining parameters for a given machine which provides the maximum material removal rate using a Genetic Algorithms(GAs). Some constraints were given in order to achieve desired surface integrity and cutting tool life conditions as wel as to protect machine tool. Such a constrained problem can be transformaed to unconstrained problem by associating a penalty with all constraint violations and the penalties are included in the function evaluation. Genetic Algorithms can be used for finding global optimum cutting conditions with respect to the above cost function transformed by pennalty function method. From the demonstration of the numerical results, it was found that the near optimal conditions could be obtained regardless of complex solution space such as cutting environment.

  • PDF

EVALUATION OF GENETIC TOXICITY FROM ENVIRONMENTAL POLLUTANTS IN DAPHNIA MAGNA AND CHIRONOMUS TENTANS FOR APPLICATION IN ECOLOGICAL RISK ASSESSMENT

  • Park, Sun-Young;Lee, Si-Won;Choi, Jin-Hee
    • Environmental Engineering Research
    • /
    • v.11 no.5
    • /
    • pp.277-284
    • /
    • 2006
  • The genetic toxicity of environmental pollutants, namely, nonylphenol (NP), bisphenol A (BPA) and chloropyriphos (CP) was investigated in aquatic sentinel species, freshwater crustacean, Daphnia magna, and larva of aquatic midge, Chironomus tentans, using Comet assay. Physiological effect of such pollutants was also investigated by studying the specimens' rates of reproduction, growth and survival. Acute toxicity results showed that, as expected, Daphnia was more sensitive than Chironomus to chemical exposure. The order of acute toxicity was CP > NP > BPA in D. magna and NP > CP > BPA in C. tentans. BPA may exert a genotoxic effect on D. magna and C. tentans, given that DNA strand breaks increased in both species exposed to this compound, whereas NP- and CP-induced DNA damage occurred only in C. tentans. In vivo genotoxic data obtained in aquatic sentinel species could provide valuable information for freshwater quality monitoring. The experiments with NP-exposed D. magna showed that the pollutant has long-term effects on reproduction, whereas no short-term effect on DNA integrity was found, being an example of a false-negative result from the biomarkers perspective. This result could be interpreted that other mechanism than genetic alteration might be involved in NP-induced reproduction failure in D. magna. False-positive results from the genotoxic biomarker obtained in BPA-exposed D. magna and in NP-exposed C. tentans make it difficult to use DNA integrity as an early warning biomarker. However, as the mere presence of genotoxic compounds, which are potentially carcinogenic, is of high concern to human and ecosystem health, it could also be important to rapidly and effectively detect genotoxic compounds in the aquatic system in ways that do not necessarily accompany a higher level of alteration. Considering the potential of D. magna and C. tentans as bioindicator species, and the importance of genotoxic biomarkers in ecotoxicity monitoring, DNA damage in these species could provide useful information for environmental risk assessment.

Essential Role of brc-2 in Chromosome Integrity of Germ Cells in C. elegans

  • Ko, Eunkyong;Lee, Junho;Lee, Hyunsook
    • Molecules and Cells
    • /
    • v.26 no.6
    • /
    • pp.590-594
    • /
    • 2008
  • brc-2, an ortholog of BRCA2 in Caenorhabditis elegans, is essential in the maintenance of genetic integrity. In C. elegans, cellular location correlates with meiotic progression, and transgene-induced cosuppression is observed in the germ line but not in somatic cells. We used these unique features to dissect the role of brc-2 in the germ line from that in somatic cells. In situ hybridization of wild type animals revealed that brc-2 gene expression was higher in oocytes than in other germline cells, and was barely detectable in mitotic cells. In contrast, germ cells containing multicopies of the brc-2 transgene showed no significant in situ hybridization signal at any oogenesis stage, confirming that brc-2 expression was functionally cosuppressed in the transgenic germ line. RAD-51 foci formation in response to DNA damage was abrogated in brc-2-cosuppressed germ cells, whereas wild-type germ cells showed strong RAD-51 foci formation. These germ cells exhibited massive chromosome fragmentation and decompaction instead of six bivalent chromosomes in diakinesis. Accordingly, lethality was observed after the early stage of germline development. These results suggest that brc-2 plays essential roles in chromosome integrity in early prophase, and therefore is crucial in meiotic progression and embryonic survival.