• Title/Summary/Keyword: Genetic identification

Search Result 1,294, Processing Time 0.027 seconds

Identification of Green Alga Chlorella vulgaris Isolated from Freshwater and Improvement Biodiesel Productivity via UV Irradiation

  • Gomaa, Mohamed A.;Refaat, Mohamed H.;Salim, Tamer M.;El-Sayed, Abo El-Khair B.;Bekhit, Makhlouf M.
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.3
    • /
    • pp.381-389
    • /
    • 2019
  • Chlorella vulgaris was isolated from the Nile River, Qalubia Governorate, Egypt, for possible use in biodiesel production. BG-II nutrient growth media was used for isolation and laboratory growth. Identification was performed via 18S rRNA gene amplification, followed by sequencing. The alga was exposed to UV-C (254 nm) for 15, 30, and 45 s to improve dry weight accumulation and to increase the oil production. Daily measurements of dry weight ($g{\cdot}l^{-1}$) were performed; oil content and volumetric lipid productivity were also determined. UV-C exposure led to an increase in the volumetric lipid productivity by 27, 27.3, and $32.4mg{\cdot}l^{-1}{\cdot}d^{-1}$ with 15, 30, and 45 s, respectively, as compared with the control, which resulted in $18mg{\cdot}l^{-1}{\cdot}d^{-1}$. Of the examined mutants, the one with the highest productivity was re-irradiated by UV-C (254 nm) for 15, 30, 45, and 60 s. For 15 s of exposure time, the oil content increased to 34%, while it was 31% at 30 s; further, it decreased to 22% at 45 and 60 s exposures. The fatty acid methyl ester profile was 82.22% in the first mutant at 45 s, compared with the wild strain that contained a total of 66.01% of FAs. Furthermore, the highest levels of polyunsaturated fatty acid methyl ester were observed in the mutant exposed for 45 s, and it reached 11.41%, which reduced the cetane number to 71.3.

Genetic analysis using whole-exome sequencing in pediatric chronic kidney disease: a single center's experience

  • Lee, Hyeonju;Min, Jeesu;Ahn, Yo Han;Kang, Hee Gyung
    • Childhood Kidney Diseases
    • /
    • v.26 no.1
    • /
    • pp.40-45
    • /
    • 2022
  • Purpose: Chronic kidney disease (CKD) has various underlying causes in children. Identification of the underlying causes of CKD is important. Genetic causes comprise a significant proportion of pediatric CKD cases. Methods: In this study, we performed whole-exome sequencing (WES) to identify genetic causes of pediatric CKD. From January to June 2021, WES was performed using samples from pediatric patients with CKD of unclear etiology. Results: Genetic causes were investigated using WES in 37 patients (17 males) with pediatric CKD stages 1 (n=5), 2 (n=7), 3 (n=2), 4 (n=2), and 5 (n=21). The underlying diseases were focal segmental glomerulosclerosis (n=9), congenital anomalies of the kidney and urinary tract including reflux nephropathy (n=8), other glomerulopathies (n=7), unknown etiology (n=6), and others (n=7). WES identified genetic causes of CKD in 12 of the 37 patients (32.4%). Genetic defects were discovered in the COL4A4 (n=2), WT1 (n=2), ACTN4, CEP290, COL4A3, CUBN, GATA3, LAMA5, NUP107, and PAX2 genes. WT1 defects were found in patients whose pathologic diagnosis was membranoproliferative glomerulonephritis, and identification of CUBN defects led to discontinuation of immunosuppressive agents. Genetic diagnosis confirmed the clinical diagnosis of hypoparathyroidism, sensorineural deafness, and renal disease; Alport syndrome; and Joubert syndrome in three of the patients with CKD of unknown etiology (COL4A4 [n=2], CUBN [n=1]). Extrarenal symptoms were considered phenotypic presentations of WT1, PAX2, and CEP290 defects. Conclusions: WES provided a genetic diagnosis that confirmed the clinical diagnosis in a significant proportion (32.4%) of patients with pediatric CKD.

Update on the Vein of Galen Aneurysmal Malformation : Disease Concept and Genetics

  • Hyun-Seung Kang
    • Journal of Korean Neurosurgical Society
    • /
    • v.67 no.3
    • /
    • pp.308-314
    • /
    • 2024
  • Vein of Galen aneurysmal malformation is one of important pediatric arteriovenous shunt diseases, especially among neonates and infants. Here, early history of the disease identification, basic pathoanatomy with a focus on the embryonic median prosencephalic vein, classification and differential diagnoses, and recent genetic studies are reviewed.

A case of Noonan syndrome diagnosed using the facial recognition software (FACE2GENE)

  • Kim, Soo Kyoung;Jung, So Yoon;Bae, Seong Phil;Kim, Jieun;Lee, Jeongho;Lee, Dong Hwan
    • Journal of Genetic Medicine
    • /
    • v.16 no.2
    • /
    • pp.81-84
    • /
    • 2019
  • Clinicians often have difficulties diagnosing patients with subtle phenotypes of Noonan syndrome phenotypes. Facial recognition technology can help in the identification of several genetic syndromes with facial dysmorphic features, especially those with mild or atypical phenotypes. A patient visited our clinic at 5 years of age with short stature. She was administered growth hormone treatment for 6 years, but her growth curve was still below the 3rd percentile. She and her mother had wide-spaced eyes and short stature, but there were no other remarkable features of a genetic syndrome. We analyzed their photographs using a smartphone facial recognition application. The results suggested Noonan syndrome; therefore, we performed targeted next-generation sequencing of genes associated with short stature. The results showed that they had a mutation on the PTPN11 gene known as the pathogenic mutation of Noonan syndrome. Facial recognition technology can help in the diagnosis of Noonan syndrome and other genetic syndromes, especially in patients with mild phenotypes.

Fuzzy Model Identification Using VmGA

  • Park, Jong-Il;Oh, Jae-Heung;Joo, Young-Hoon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.1
    • /
    • pp.53-58
    • /
    • 2002
  • In the construction of successful fuzzy models for nonlinear systems, the identification of an optimal fuzzy model system is an important and difficult problem. Traditionally, sGA(simple genetic algorithm) has been used to identify structures and parameters of fuzzy model because it has the ability to search the optimal solution somewhat globally. But SGA optimization process may be the reason of the premature local convergence when the appearance of the superior individual at the population evolution. Therefore, in this paper we propose a new method that can yield a successful fuzzy model using VmGA(virus messy genetic algorithms). The proposed method not only can be the countermeasure of premature convergence through the local information changed in population, but also has more effective and adaptive structure with respect to using changeable length string. In order to demonstrate the superiority and generality of the fuzzy modeling using VmGA, we finally applied the proposed fuzzy modeling methodof a complex nonlinear system.

Genetic Variations of Aspergillus fumigatus Clinical Isolates from Korea

  • Kim, Sunghyun;Ma, Pan-Gon;Park, Young-Seok;Yu, Young-Bin;Hwang, Kyu Jam;Kim, Young Kwon
    • Biomedical Science Letters
    • /
    • v.23 no.3
    • /
    • pp.223-229
    • /
    • 2017
  • Fungal infections by human pathogenic fungi are increasing globally in elderly, children and immune suppressed or deficient patients. Aspergillus fumigatus is one of the well-known pathogenic fungi and causes aspergilloses in human world widely. However, current identification and classification methods based on its phenotypic characteristics still have limitations. Therefore, currently, molecular biological tools using their DNA sequences are used for genotype identification and classification. In the present study, in order to analyze genetic variations of A. fumigatus clinical isolates, a total of six housekeeping genes were amplified by PCR using specific primer pairs and multi-locus sequence typing (MLST) assay. Results from phylogenetic tree analysis showed that most A. fumigatus strains (88.9%) from respiratory specimens were classified into cluster A and B, and approximately half of A. fumigatus strains (46%) from non-respiratory specimens were classified into cluster C and D. Although the sample size was limited, genetic characteristics of A. fumigatus clinical isolates according to their origins were very similar and well-correlated with other clinical data.

Molecular identification of Korean ginseng cultivar "Chunpoong" using the mitochondrial nad 7 intron 4 region (Mitochondrial nad 7 intron 4 region을 통한 분자생물학적 고려인삼품종 "천풍"검증)

  • Wang, Hong-Tao;Kim, Min-Kyeoung;Kwon, Woo-Saeng;Yang, Deok-Chun
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.15-15
    • /
    • 2010
  • Koran ginseng(Pnax ginseng) is one of the most important medicinal plants in Orient. Among the nine cultivars of Korea ginseng, Chunpoong commands a much greater market value and has been planted widely. A rapid and reliable method for discriminating the Chunpoong cultivar was developed by exploiting a single nucleotide polymorphism (SNP) in the mitochondrial nad7 intron 4 region of nine Korea ginseng cultivars using universal primers. A SNP was detected between Chunpoong and other cultivars and modified allele-specific primers were designed from this SNP site to effective method for the geneic identification of the Chunpoong cultivar of ginseng.

  • PDF