• 제목/요약/키워드: Genetic evaluation

검색결과 886건 처리시간 0.022초

배경영상에서 유전자 알고리즘을 이용한 얼굴의 각 부위 추출 (Facial Feature Extraction using Genetic Algorithm from Original Image)

  • 이형우;이상진;박석일;민홍기;홍승홍
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 하계종합학술대회 논문집(4)
    • /
    • pp.214-217
    • /
    • 2000
  • Many researches have been performed for human recognition and coding schemes recently. For this situation, we propose an automatic facial feature extraction algorithm. There are two main steps: the face region evaluation from original background image such as office, and the facial feature extraction from the evaluated face region. In the face evaluation, Genetic Algorithm is adopted to search face region in background easily such as office and household in the first step, and Template Matching Method is used to extract the facial feature in the second step. We can extract facial feature more fast and exact by using over the proposed Algorithm.

  • PDF

필드고장을 이용한 신뢰성예측 프로그램 개발 (A Development of a Reliability Prediction Program Using the Field Failure)

  • 백재진;이광원
    • 한국자동차공학회논문집
    • /
    • 제20권2호
    • /
    • pp.1-7
    • /
    • 2012
  • A Failure data from operating condition includes various failures. Reliability evaluation by operating condition is more correct than test condition. Additional, the evaluation result by operating condition is widely used for quality assurance, forecasting amount of manufacturing at EOL. To discover valuable things from the failure data, arrangement of the failure data and information technique to handle data is needed among many failure data. This paper introduces a reliability prediction program to solve this problem based on the failure. And new technologies for parameters estimation with method of Graphic-Wizard-Parameters-Estimation and Genetic Algorithm are introduced.

Evaluation of genetic potential of Bivoltine silkworm race for breeding programme in Vietnam

  • Nguyen, Thi Nhai;Van Le, Hong;Hong, Seung Gil;Hyun, Jong Nae
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제43권2호
    • /
    • pp.99-103
    • /
    • 2021
  • In the present study, twelve bivoltine silkworm races were evaluated for its performance based on quantitative and qualitative traits. Seven oval and five peanut cocoon shaped races were reared in different seasons of the year. By using evaluation index method, the results showed that six races were identified as potential parental races. Among oval races, 75xin, KoC, KoZ and among peanut races An 902, 7532 and QD7 were selected as base material. The identified high yielding races will be used in various breeding programs as initial parents for the production of superior bivoltine breeds/hybrids in Vietnam

Analysis of Genetic Variability Using RAPD Markers in Paeonia spp. Grown in Korea

  • Lim, Mi Young;Jana, Sonali;Sivanesan, Iyyakkannu;Park, Hyun Rho;Hwang, Ji Hyun;Park, Young Hoon;Jeong, Byoung Ryong
    • 원예과학기술지
    • /
    • 제31권3호
    • /
    • pp.322-327
    • /
    • 2013
  • The genetic diversity and phylogenetic relationships of eleven herbaceous peonies grown in Korea were analyzed by random amplified polymorphic DNA (RAPD). Twenty-four decamer RAPD primers were used in a comparative analysis of these Korean peony species. Of the 142 total RAPD fragments amplified, 124 (87.3%) were found to be polymorphic. The remaining 18 fragments were found to be monomorphic (12.7%) shared by individuals of all 11 peony species. Cluster analysis based on the presence or absence of bands was performed by Jaccard's similarity coefficient, based on Unweighted Pair Group Method with Arithmetic Averages. Genetic similarity range was 0.39 to 0.90 with a mean of 0.64. This study offered a rapid and reliable method for the estimation of variability among different peony species which could be utilized by the breeders for further improvement of the local peony species. Also, the results propose that the RAPD marker technique is a useful tool for evaluation of genetic diversity and relationship amongst different peony species.

Estimation of Additive and Dominance Genetic Variances in Line Breeding Swine

  • Ishida, T.;Kuroki, T.;Harada, H.;Fukuhara, R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제14권1호
    • /
    • pp.1-6
    • /
    • 2001
  • Additive and dominance genetic variances were estimated for purebred Landrace selected with line breeding from 1989 to 1995 at Miyazaki Livestock Experiment Station, Kawaminami Branch. Ten body measurements, two reproductive traits and fifteen carcass traits were analyzed with single-trait mixed model analysis. The estimates of narrow-sense heritabilities by additive model were in the range of 0.07 to 0.46 for body measurements, 0.05 to 0.14 for reproductive traits, and 0.05 to 0.68 for carcass traits. The additive model tended to slightly overestimate the narrow-sense heritabilities as compared to the additive and dominance model. The proportion of the dominance variance to total genetic variance ranged from 0.11 to 0.91 for body measurements, 0.00 to 0.65 for reproductive traits, and 0.00 to 0.86 for carcass traits. Large differences among traits were found in the ratio of dominance to total genetic variance. These results suggested that dominance effect would affect the expression of all ten body measurements, one reproductive trait, and nine carcass traits. It is justified to consider the dominance effects in genetic evaluation of the selected lines for those traits.

Biodiversity and Conservation of Indian Sheep Genetic Resources - An Overview -

  • Bhatia, S.;Arora, R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제18권10호
    • /
    • pp.1387-1402
    • /
    • 2005
  • Indian subcontinent is a rich source of diverse ovine germplasm, and only very few countries have such a large number of breeds with wide genetic diversity. This vast ovine biodiversity in India is being eroded rapidly and more than 50% of sheep breeds are currently under threat. It is noteworthy that the characterization of Indian sheep breeds was last done in the first half of the century since then no recent estimates are available and surveys in majority of the regions/breeds are far from complete. Starting in 1985 National Bureau of Animal Genetic Resources (NBAGR), Karnal, India, therefore, initiated activities aimed at determining the status and compiling information on indigenous farm animals including sheep. This report represents attempts made to date on the basis of field/literature surveys and additional activities on molecular characterization to ascertain their status including distribution, population changes, breed diversities and risk status. The need, mode and mechanisms of conservation are also described. Involvement of several agencies for evaluation, improvement, conservation programmes and recommendations made for effective characterization and conservation of sheep biodiversity are highlighted. This publication would promote action particularly at national level to improve the information base on domestic Indian breeds of sheep and provide input into national domestic sheep diversity conservation policy decisions.

Genetic Evaluation and Selection Response of Birth Weight and Weaning Weight in Indigenous Sabi Sheep

  • Assan, N.;Makuza, S.;Mhlanga, F.;Mabuku, O.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제15권12호
    • /
    • pp.1690-1694
    • /
    • 2002
  • Genetic parameters were estimated for birth weight and weaning weight from three year (1991-1993) data totalling 1100 records of 25 rams to 205 ewes of Indigenous Sabi flock maintained at Grasslands Research Station in Zimbabwe. AIREML procedures were used fitting an Animal Model. The statistical model included the fixed effects of year of lambing, sex of lamb, birth type and the random effect of ewe. Weight of ewe when first joined with ram was included as a covariate. Direct heritability estimates of 0.27 and 0.38, and maternal heritability estimates of 0.24 and 0.09, were obtained for birth weight and weaning weight, respectively. The total heritability estimates were 0.69 and 0.77 for birth weight and weaning weight, respectively. Direct-aternal genetic correlations were high and positive. The corresponding genetic covariance estimates between direct and maternal effects were positive and low, 0.25 and 0.18 for birth weight and weaning weight, respectively. Responses to selection were 0.8 kg and 0.14 kg for birth weight and weaning weight, respectively. The estimated expected correlated response to selection for birth weight by directly selecting for weaning weight was 0.26. Direct heritabilities were moderate; as a result selection for any of these traits should be successful. Maternal heritabilities were low for weaning weight and should have less effect on selection response. Indirect selection can give lower response than direct selection.

Evaluation of the Genetic Relationship among Ten Chinese Indigenous Pig Breeds with Twenty-six Microsatellite Markers

  • Li, Changchun;Wang, Zhigang;Liu, Bang;Yang, Shulin;Zhu, Zhengmao;Fan, Bin;Yu, Mei;Zhao, Shuhong;Li, Kui
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제17권4호
    • /
    • pp.441-444
    • /
    • 2004
  • The genetic diversities and relationships of 10 Chinese indigenous pig breeds and three exotic pig breeds have been evaluated using 26 microsatellites recommended by the Food and Agriculture Organization & the International Society of Animal Genetics (FAO-ISAG). The allele frequencies, genetic heterozygosity (H) and polymorphism information content (PIC) have been calculated. The results showed that genetic diversity of Chinese indigenous pig breeds is higher than that of the introduced pig breeds. The clustering of 10 breeds is generally consistent with their geographical distribution.

유전알고리듬에 기반을 둔 혼합제품 유연조립라인 밸런싱 (Mixed-product flexible assembly line balancing based on a genetic algorithm)

  • 송원섭;김형수;김여근
    • 한국경영과학회지
    • /
    • 제30권1호
    • /
    • pp.43-54
    • /
    • 2005
  • A flexible assembly line (FAL) is a production system that assembles various parts in unidirectional flow line with many constraints and manufacturing flexibilities. In this research we deal with a FAL balancing problem with the objective of minimizing the maximum workload allocated to the stations. However, almost all the existing researches do not appropriately consider various constraints due to the problem complexity. Therefore, this study addresses a balancing problem of FAL with many constraints and manufacturing flexibilities, unlike the previous researches. We use a genetic algorithm (GA) to solve this problem. To apply GA to FAL. we suggest a genetic representation suitable for FAL balancing and devise evaluation method for individual's fitness and genetic operators specific to the problem, including efficient repair method for preserving solution feasibility. After we obtain a solution using the proposed GA. we use a heuristic method for reassigning some tasks of each product to one or more stations. This method can improve workload smoothness and raise work efficiency of each station. The proposed algorithm is compared and analyzed in terms of solution quality through computational experiments.

Evaluation of Genetic Structure of Amaranth Accessions from the United States

  • He, Qiang;Park, Yong-Jin
    • Weed & Turfgrass Science
    • /
    • 제2권3호
    • /
    • pp.230-235
    • /
    • 2013
  • Amaranths (Amaranthus sp.), an endemic American crop, are now grown widely across the world. This study used 14 simple sequence repeat (SSR) markers to analyze the genetic diversity of 74 amaranth accessions from the United States, with eight accessions from Australia as controls. One hundred twenty-two alleles, averaging eight alleles per locus, were observed. The average major allele frequency, expected heterozygosity, and polymorphism information content (PIC) were 0.44, 0.69, and 0.65, respectively. The structure analysis based on genetic distance classified 77 accessions (94%) into three clusters, while five accessions (6%) were admixtures. Among the three clusters, Cluster 3 had the highest allele number and PIC values, while Cluster 2 had the lowest. The lowest FST was between Clusters 1 and 3, indicating that these two clusters have higher gene flow between them compared to the others. This finding was reasonable because Cluster 2 included most of the Australian accessions. These results indicated satisfactory genetic diversity among U.S. amaranths. These findings can be used to design effective breeding programs involving different plant characteristics.