Browse > Article
http://dx.doi.org/10.5660/WTS.2013.2.3.230

Evaluation of Genetic Structure of Amaranth Accessions from the United States  

He, Qiang (Department of Plant Resources, College of Industrial Sciences, Kongju National University)
Park, Yong-Jin (Department of Plant Resources, College of Industrial Sciences, Kongju National University)
Publication Information
Weed & Turfgrass Science / v.2, no.3, 2013 , pp. 230-235 More about this Journal
Abstract
Amaranths (Amaranthus sp.), an endemic American crop, are now grown widely across the world. This study used 14 simple sequence repeat (SSR) markers to analyze the genetic diversity of 74 amaranth accessions from the United States, with eight accessions from Australia as controls. One hundred twenty-two alleles, averaging eight alleles per locus, were observed. The average major allele frequency, expected heterozygosity, and polymorphism information content (PIC) were 0.44, 0.69, and 0.65, respectively. The structure analysis based on genetic distance classified 77 accessions (94%) into three clusters, while five accessions (6%) were admixtures. Among the three clusters, Cluster 3 had the highest allele number and PIC values, while Cluster 2 had the lowest. The lowest FST was between Clusters 1 and 3, indicating that these two clusters have higher gene flow between them compared to the others. This finding was reasonable because Cluster 2 included most of the Australian accessions. These results indicated satisfactory genetic diversity among U.S. amaranths. These findings can be used to design effective breeding programs involving different plant characteristics.
Keywords
Amaranths (Amaranthus sp.); Genetic Diversity; Population Structure; SSR;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wassom, J.J. and Tranel, P.J. 2005. Amplified fragment length polymorphism based genetic relationships among weedy amaranthus species. J. Hered. 96(4):410-416.   DOI   ScienceOn
2 Wetzel, D., Michael, K., Horak, J. and Skinner, D.J. 1999. Use of PCR-based molecular markers to identify weedy amaranthus species. Weed Science. 7:518-523.
3 Wolfe, M. S. 1985. The Current status and prospects of multiline cultivars and variety mixtures for disease resistance. Annu. Rev. Phytopathol. 23(1): 251-273.   DOI   ScienceOn
4 Bao, J.S., Corke, H. and Sun, M. 2006. Analysis of genetic diversity and relationship in waxy rice (Oryza sativa L.) using AFLP and ISSR marker. Genet. Resour. Crop Ev. 53: 323-330.   DOI
5 Chan, K.F. and Sun, M.1997. Genetic diversity and relationships detected by isozyme and RAPD analysis of crop and wild species of Amaranthus. Theor. Appl. Genet. 95:865-873   DOI
6 Cheng, Y., Kim, C.H., Shin, D.I., Kim, S.M., et al. 2011. Development of simple sequence repeat (SSR) markers to study diversity in the herbaceous peony (Paeonia lactiflora). J. Med. Plants Res. 5: 6744-6751.
7 Chung, J.W. and Park, Y.J. 2010. Population structure analysis reveals the maintenance of isolated sub-populations of weedy rice. Weed Res. 50(6): 606-620.   DOI   ScienceOn
8 Costea, M., Weaver, S.E. and Tardif, F.J. 2004. The biology of Canadian weeds. 130. Amaranthus retroflexus L., A. powellii S. Watson and A. hybridus L. Can. J. Plant Sci. 84(2): 631-668   DOI   ScienceOn
9 Evanno, G., Regnaut, S. and Goudet, J. 2005. Detecting the number of clusters of individuals using the software structure: a simulation study. Mol. Ecol. 14(8): 2611-2620.   DOI   ScienceOn
10 Excoffier, L., Laval, G. and Schneider, S. 2005. Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol. Bioinform. 1: p.47.
11 Nagaraju, J., Kathirvel, M., Kumar, R.R., Siddiq, E. and Hasnain, S.E. 2002. Genetic analysis of traditional and evolved Basmati and non-Basmati rice varieties by using fluorescence-based ISSR-PCR and SSR markers. P. Natl. Acad. Sci. USA. 99(9):5836-5841.   DOI   ScienceOn
12 Ostrowski, M.F., David J., Santoni, S., Mckhann, H., et al. 2006. Evidence for a large-scale population structure among accessions of Arabidopsis thaliana: possible causes and consequences for the distribution of linkage disequilibrium. Mol. Ecol. 15(6):1507-1517.   DOI   ScienceOn
13 Pritchard, J.K., Stephens, M. and Falush, D. 2000. Inference of Population Structure Using Multilocus Genotype Data: Linked Loci and Correlated Allele Frequencies. Genetics 155(2):945- 959.
14 Ray, T. and Roy, S.C. 2009. Genetic diversity of Amaranthus species from the Indo-Gangetic Plains revealed by RAPD analysis leading to the development of ecotype-specific SCAR marker. J Hered. 100 (3):338-347.   DOI   ScienceOn
15 Sauer, J.D. 1967. The grain amaranths and their relatives: a revised taxonomic and geographic survey. Ann. Missouri. Bot. Gard. 54(2):103-137.   DOI   ScienceOn
16 Schneider, S. and Excoffier, L. 1999. Estimation of past demographic parameters from the distribution of pairwise differences when the mutation rates vary among Sites: Application to human mitochondrial DNA. Genetics 152(3):1079-1089.
17 Xu, F. and Sun, M. 2001. Comparative analysis of phylogenetic relationships of grain amaranths and their wild relatives (Amaranthus; Amaranthaceae) using internal transcribed spacer, amplified fragment length polymorphism, and double-primer fluorescent intersimple sequence repeat markers. Mol. Phylogenet. Evol. 21(3):372-387.   DOI   ScienceOn
18 Schuelke, M. 2000. An economic method for the fluorescent labeling of PCR products. Nat. Biotechnol. 18(2):233-234.   DOI   ScienceOn
19 Tam, S.M., Mhiri, C., Vogelaar, A., Kerkveld, M., Pearce, S.R., et al. 2005. Comparative analyses of genetic diversities within tomato and pepper collections detected by retrotransposonbased SSAP, AFLP and SSR. Theor. Appl. Genet. 110(5): 819- 831.   DOI   ScienceOn
20 Tamura, K., Dudley, J., Nei, M. and Kumar, S. 2007.MEGA4: Molecular evolutionary genetics analysis (MEGA) software version4.0. Mol. Biol. Evol. 24(8):1596-1599.   DOI   ScienceOn
21 Mujica, A. and Jacobsen, S.E. 2003. The genetic resources of Andean grain amaranths (Amaranthus caudatus L., A. cruentus L. and A. hypochondriacus L.) in America. Plant Genet. Resour. Newsl. 133:41-44.
22 Zhao, W., Chung, J.W., Ma, K.H., Kim, T.S., et al. 2009. Analysis of genetic diversity and population structure of rice cultivars from Korea, China and Japan using SSR markers. Genes Genom. 31(4): 283-292.   DOI   ScienceOn
23 Liang, C.Z., Gu, M.H., Pan, X.B., Liang, G.H., et al. 1994. RFLP tagging of a new semidwarfing gene in rice. Theor. Appl. Genet. 88(6):898-900.   DOI   ScienceOn
24 Liu, K. and Muse, S.V. 2005. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21(9):2128-2129.   DOI   ScienceOn
25 Lee, J.R., Hong, G.Y., Dixit, A., Chung, J.W., et al. 2008. Characterization of microsatellite loci developed for Amaranthus hypochondriacus and their cross-amplification in wild species. Conserv. Genet. 9(1):243-246.   DOI   ScienceOn
26 Feltus, F.A., Wan, J., Schulze, S.R., Estill, J.C., et al. 2004. An SNP resource for rice genetics and breeding based on subspecies indica and japonica genome alignments. Genome Res. 14(9): 812-1819.   DOI   ScienceOn
27 Jin, L., Lu, Y., Xiao, P., Sun, M., Corke, H., et al. 2010. Genetic diversity and population structure of a diverse set of rice germplasm for association mapping. Theor Appl Genet. 121(3):475-487.   DOI   ScienceOn
28 Khaing, A.A., Moe, K.T., Chung, J.W., Baek, H.J., et al. 2013. Genetic diversity and population structure of the selected core set in Amaranthus using SSR markers. Plant Breeding. 132(2): 165-173.   DOI   ScienceOn
29 Li, G., Kwon, S.W. and Park, Y.J. 2012. Updates and perspectives on the utilization of molecular makers of complex traits in rice. Genet. Mol. Res. 11(4):4157-4168.   DOI   ScienceOn