• Title/Summary/Keyword: Genetic enhancement

Search Result 142, Processing Time 0.032 seconds

Genetic Variability and Population Structure of Olive Flounder Paralichthys olivaceus from Stocked Areas Using Microsatellite DNA Markers (종묘방류에 따른 넙치, Paralichthys olivaceus 지역집단의 유전학적 구조)

  • Jeong, Da Sang;Jeon, Chang Young
    • Korean Journal of Ichthyology
    • /
    • v.20 no.3
    • /
    • pp.156-162
    • /
    • 2008
  • Five microsatellite DNA markers were used to investigate genetic diversity and population structure of olive flounder Paralichthys olivaceus collected from four locations (YD, SC, GJ, WD) where hatchery-based seeds of the flounder have been released. The average of observed (Ho) and expected heterozygosity (He) ranged from 0.833 to 0.871, and from 0.842 to 0.876, respectively. The average number of alleles per locus ranged from 12.4 to 17.8. The proportion of stocked flounder ranged from 20.0% to 95.8% for wild-caught populations with a decreasing tendency of alleles per locus following a higher proportion of stocked flounder. There is need to implement a more careful stock-enhancement program of hatchery-based seeds and to monitor its genetic effects on wild populations to ensure conservation of natural flounder resources.

The Effect of γ-Aminobutyric Acid Intake on UVB- Induced Skin Damage in Hairless Mice

  • Hairu Zhao;Bomi Park;Min-Jung Kim;Seok-Hyun Hwang;Tae-Jong Kim;Seung-Un Kim;Iksun Kwon;Jae Sung Hwang
    • Biomolecules & Therapeutics
    • /
    • v.31 no.6
    • /
    • pp.640-647
    • /
    • 2023
  • The skin, the largest organ in the body, undergoes age-related changes influenced by both intrinsic and extrinsic factors. The primary external factor is photoaging which causes hyperpigmentation, uneven skin surface, deep wrinkles, and markedly enlarged capillaries. In the human dermis, it decreases fibroblast function, resulting in a lack of collagen structure and also decreases keratinocyte function, which compromises the strength of the protective barrier. In this study, we found that treatment with γ-aminobutyric acid (GABA) had no toxicity to skin fibroblasts and GABA enhanced their migration ability, which can accelerate skin wound healing. UVB radiation was found to significantly induce the production of matrix metalloproteinase 1 (MMP-1), but treatment with GABA resulted in the inhibition of MMP-1 production. We also investigated the enhancement of filaggrin and aquaporin 3 in keratinocytes after treatment with GABA, showing that GABA can effectively improve skin moisturization. In vivo experiments showed that oral administration of GABA significantly improved skin wrinkles and epidermal thickness. After the intake of GABA, there was a significant decrease observed in the increase of skin thickness measured by calipers and erythema. Additionally, the decrease in skin moisture and elasticity in hairless mice exposed to UVB radiation was also significantly restored. Overall, this study demonstrates the potential of GABA as functional food material for improving skin aging and moisturizing.

Design of GA-Fuzzy Precompensator of TCSC-PSS for Enhancement of Power System Stability (전력계통 안정도 향상을 위한 TCSC 안정화 장치의 GA-퍼지 전 보상기 설계)

  • Chung Mun Kyu;Wang Yong Peel;Chung Hyeng Hwan;Lee Chang Woo;Lee Jeong Phil;Hur Dong Ryol
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.292-294
    • /
    • 2004
  • In this paper, we design the GA-fuzzy precompensator of a Power System Stabilizer for Thyristor Controlled Series Capacitor(TCSC-PSS) for enhancement of power system stability. Here a fuzzy precompensator is designed as a fuzzy logic-based precompensation approach for TCSC-PSS. This scheme is easily implemented simply by adding a fuzzy precompensator to an existing TCSC-PSS. And we optimize the fuzzy precompensator with a genetic algorithm for complements the demerit such as the difficulty of the component selection of fuzzy controller, namely, scaling factor, membership Auction and control rules. Simulation results show that the proposed control technique is superior to a conventional PSS in dynamic responses over the wide range of operating conditions and is convinced robustness and reliableness in view of structure.

  • PDF

Feeding the extra billions: strategies to improve crops and enhance future food security

  • Stamm, Petra;Ramamoorthy, Rengasamy;Kumar, Prakash P.
    • Plant Biotechnology Reports
    • /
    • v.5 no.2
    • /
    • pp.107-120
    • /
    • 2011
  • The ability to feed an expanding world population poses one of the greatest challenges to mankind in the future. Accompanying the increased demand for food by the expected nine billion inhabitants of Earth in 2050 will be a continual decrease in arable land area, together with a decline in crop yield due to a variety of stresses. For these formidable challenges to be met, future crops should not only by high-yielding, but also stress-tolerant and disease-resistant. In this review, we highlight the importance of genetic engineering as an indispensable tool to generate just such future crops. We briefly discuss strategies and available tools for biotechnological crop improvement and identify selected examples of candidate genes that may be manipulated so that current biological maxima in yield may be surpassed by comfortable margins. Future prospects and the necessity for basic research aimed at identifying novel target genes are also discussed.

Potential Anomaly Separation and Archeological Site Localization Using Genetically Trained Multi-level Cellular Neural Networks

  • Bilgili, Erdem;Goknar, I. Cem;Albora, Ali Muhittin;Ucan, Osman Nuri
    • ETRI Journal
    • /
    • v.27 no.3
    • /
    • pp.294-303
    • /
    • 2005
  • In this paper, a supervised algorithm for the evaluation of geophysical sites using a multi-level cellular neural network (ML-CNN) is introduced, developed, and applied to real data. ML-CNN is a stochastic image processing technique based on template optimization using neighborhood relationships of the pixels. The separation/enhancement and border detection performance of the proposed method is evaluated by various interesting real applications. A genetic algorithm is used in the optimization of CNN templates. The first application is concerned with the separation of potential field data of the Dumluca chromite region, which is one of the rich reserves of Turkey; in this context, the classical approach to the gravity anomaly separation method is one of the main problems in geophysics. The other application is the border detection of archeological ruins of the Hittite Empire in Turkey. The Hittite civilization sites located at the Sivas-Altinyayla region of Turkey are among the most important archeological sites in history, one reason among others being that written documentation was first produced by this civilization.

  • PDF

A Study on Performance Enhancement for Remote Operation of Industrial Equipments

  • Lho, Tae-Jung;Joo, Hyun-Woo;Kang, Dong-Jung;Song, Se-Hoon;Park, Ki-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.813-817
    • /
    • 2003
  • By increasing trades between countries, importance of harbors is becoming serious, including our country. When it comes to Container Crane Operation, the most important matter is how many containers are loaded in a truck or a ship by given time. This can be a crucial matter of harbors in taking care of materials. The present harbors' crane uses a wire-rope conveyance materials are transported in the air and have high free-angle of location. The sway can cause the delay of time, wrong position of Trolley and the damage of materials. In this study, we obtain the optimal PID parameters with GA(Genetic Algorithm) and apply those parameters to the PID Controller. In the result of the experimentation, we can see how effectively the PID controller, applied with the optimal parameters obtained by GA, can control the sway angle.

  • PDF

A Study on Computational Efficiency Enhancement by Using Full Gray Code Genetic Algorithm (전 영역 그레이코드 유전자 알고리듬의 효율성 증대에 관한 연구)

  • 이원창;성활경
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.10
    • /
    • pp.169-176
    • /
    • 2003
  • Genetic algorithm (GA), which has a powerful searching ability and is comparatively easy to use and also to apply, is in the spotlight in the field of the optimization for mechanical systems these days. However, it also contains some problems of slow convergence and low efficiency caused by a huge amount of repetitive computation. To improve the processing efficiency of repetitive computation, some papers have proposed paralleled GA these days. There are some cases that mention the use of gray code or suggest using gray code partially in GA to raise its slow convergence. Gray code is an encoding of numbers so that adjacent numbers have a single digit differing by 1. A binary gray code with n digits corresponds to a hamiltonian path on an n-dimensional hypercube (including direction reversals). The term gray code is open used to refer to a reflected code, or more specifically still, the binary reflected gray code. However, according to proposed reports, gray code GA has lower convergence about 10-20% comparing with binary code GA without presenting any results. This study proposes new Full gray code GA (FGGA) applying a gray code throughout all basic operation fields of GA, which has a good data processing ability to improve the slow convergence of binary code GA.

Automatic Gait Generation for Quadruped Robot Using GA with an Enhancement of Performance (GA를 이용한 4족 보행로봇의 걸음새 자동 생성 및 성능향상)

  • Seo, Ki-Sung;Choi, Jun-Seok;Cho, Young-Wan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.4
    • /
    • pp.555-561
    • /
    • 2008
  • This Paper introduces new approach to develop fast and reliable gaits for quadruped robot using GA(genetic algorithm). Planning gaits for legged robots is a challenging task that requires optimizing parameters in a highly irregular and multidimensional space. Recent approaches have problems to select proper parameters which are not known in advance and optimize more than ten to twenty parameters simultaneously. In our approach, the effects of major gait parameters are analysed and used to guide the search more efficiently. The experiments of Sony AIBO ERS-7 in Webots environment indicate that our approach is able to produce much improved results in fast velocity and reliability.

UPFC Device: Optimal Location and Parameter Setting to Reduce Losses in Electric-Power Systems Using a Genetic-algorithm Method

  • Mezaache, Mohamed;Chikhi, Khaled;Fetha, Cherif
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • Ensuring the secure operation of power systems has become an important and critical matter during the present time, along with the development of large, complex and load-increasing systems. Security constraints such as the thermal limits of transmission lines and bus-voltage limits must be satisfied under all of a system’s operational conditions. An alternative solution to improve the security of a power system is the employment of Flexible Alternating-Current Transmission Systems (FACTS). FACTS devices can reduce the flows of heavily loaded lines, maintain the bus voltages at desired levels, and improve the stability of a power network. The Unified Power Flow Controller (UPFC) is a versatile FACTS device that can independently or simultaneously control the active power, the reactive power and the bus voltage; however, to achieve such functionality, it is very important to determine the optimal location of the UPFC device, with the appropriate parameter setting, in the power system. In this paper, a genetic algorithm (GA) method is applied to determine the optimal location of the UPFC device in a network for the enhancement of the power-system loadability and the minimization of the active power loss in the transmission line. To verify our approach, simulations were performed on the IEEE 14 Bus, 30 Bus, and 57 Bus test systems. The proposed work was implemented in the MATLAB platform.

Seismic behavior enhancement of frame structure considering parameter sensitivity of self-centering braces

  • Xu, Longhe;Xie, Xingsi;Yan, Xintong;Li, Zhongxian
    • Structural Engineering and Mechanics
    • /
    • v.71 no.1
    • /
    • pp.45-56
    • /
    • 2019
  • A modified mechanical model of pre-pressed spring self-centering energy dissipation (PS-SCED) brace is proposed, and the hysteresis band is distinguished by the indication of relevant state variables. The MDOF frame system equipped with the braces is formulated in an incremental form of linear acceleration method. A multi-objective genetic algorithm (GA) based brace parameter optimization method is developed to obtain an optimal solution from the primary design scheme. Parameter sensitivities derived by the direct differentiation method are used to modify the change rate of parameters in the GA operator. A case study is conducted on a steel braced frame to illustrate the effect of brace parameters on node displacements, and validate the feasibility of the modified mechanical model. The optimization results and computational process information are compared among three cases of different strategies of parameter change as well. The accuracy is also verified by the calculation results of finite element model. This work can help the applications of PS-SCED brace optimization related to parameter sensitivity, and fulfill the systematic design procedure of PS-SCED brace-structure system with completed and prospective consequences.