• Title/Summary/Keyword: Genetic effects

Search Result 1,744, Processing Time 0.03 seconds

Genetic Relationship between Milk Production, Calving Ease and Days Open at First Parity in Holstein Cows

  • Lee, D.H.;Han, K.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.2
    • /
    • pp.153-158
    • /
    • 2004
  • Data containing 14,188 lactation and reproductive records of Korean Holstein cows at first parity distributed across 3,734 herd-year-season groups were analyzed to get genetic (co)variance estimates for milk yield, fat yield, calving ease, and days open. Milk and Fat yields were adjusted to 305 d. Heritabilities and genetic correlations were estimated in two different animal models on which were included direct genetic effects (Model 1) and direct+maternal genetic effects (Model 2) using REML algorithms. Milk and fat yields were affected by age at first calving as linear and quadratic. Heritability estimates of direct effects were 0.25 for milk yield, 0.17 for fat yield, 0.03 for calving ease and 0.03 for days open in Model 2. These estimates for maternal effects were 0.05, 0.08, 0.04 and less than 0.01 for each corresponding trait. Milk productions at first lactation were to show genetically favorable correlation with calving ease and days open for direct genetic effects (-0.24 - -0.11). Moreover, calving ease was correlated with days open of 0.30 for direct genetic effects. Correlations between direct and maternal effects for each trait were negatively correlated (-0.63 - -0.32). This study suggested that maternal additive genetic variance would be not ignorable for genetic evaluation of milk production as well as reproductive traits such as calving ease and days open at first parity. Furthermore, difficult calving would genetically influence the next conception.

Estimation of Genetic Parameters for Calving Ease by Heifers and Cows Using Multi-trait Threshold Animal Models with Bayesian Approach

  • Lee, D.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.8
    • /
    • pp.1085-1090
    • /
    • 2002
  • Genetic parameters for birth weights (BWT), calving ease scores observed from calves born by heifers (CEH), and calving ease scores observed from calves born by cows (CEC) were estimated using Bayesian methodology with Gibbs sampling in different threshold animal models. Data consisted of 77,458 records for calving ease scores and birth weights in Gelbvieh cattle. Gibbs samplers were used to obtain the parameters of interest for the categorical traits in two univariate threshold animal models, a bivariate threshold animal model, and a three-trait linear-threshold animal model. Samples of heritabilities and genetic correlations were calculated from the posterior means of dispersion parameters. In a univariate threshold animal model with CEH (model 1), the posterior means of heritabilities for calving ease was 0.35 for direct genetic effects and 0.18 for maternal genetic effects. In the other univariate threshold model with CEC (model 2), the posterior means of heritabilities of CEC was 0.28 for direct genetic effects and 0.18 for maternal genetic effects. In a bivariate threshold model with CEH and CEC (model 3), heritability estimates were similar to those in unvariate threshold models. In this model, genetic correlation between heifer calving ease and cow calving ease was 0.89 and 0.87 for direct genetic effect and maternal genetic effects, respectively. In a three-trait animal model, which contained two categorical traits (CEH and CEC) and one continuous trait (BWT) (model 4), heritability estimates of CEH and CEC for direct (maternal) genetic effects were 0.40 (0.23) and 0.23 (0.13), respectively. In this model, genetic correlation estimates between CEH and CEC were 0.89 and 0.66 for direct genetic effects and maternal effects, respectively. These estimates were greater than estimates between BWT and CEH (0.82 and 0.34) or BWT and CEC (0.85 and 0.26). This result indicates that CEH and CEC should be high correlated rather than estimates between calving ease and birth weight. Genetic correlation estimates between direct genetic effects and maternal effects were -0.29, -0.31 and 0.15 for BWT, CEH and CEC, respectively. Correlation for permanent environmental effects between BWT and CEC was -0.83 in model 4. This study can provide genetic evaluation for calving ease with other continuous traits jointly with assuming that calving ease from first calving was a same trait to calving ease from later parities calving. Further researches for reliability of dispersion parameters would be needed even if the more correlated traits would be concerned in the model, the higher reliability could be obtained, especially on threshold model with property that categorical traits have little information.

Estimation of Interaction Effects among Nucleotide Sequence Variants in Animal Genomes

  • Lee, Chaeyoung;Kim, Younyoung
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.1
    • /
    • pp.124-130
    • /
    • 2009
  • Estimating genetic interaction effects in animal genomics would be one of the most challenging studies because the phenotypic variation for economically important traits might be largely explained by interaction effects among multiple nucleotide sequence variants under various environmental exposures. Genetic improvement of economic animals would be expected by understanding multi-locus genetic interaction effects associated with economic traits. Most analyses in animal breeding and genetics, however, have excluded the possibility of genetic interaction effects in their analytical models. This review discusses a historical estimation of the genetic interaction and difficulties in analyzing the interaction effects. Furthermore, two recently developed methods for assessing genetic interactions are introduced to animal genomics. One is the restricted partition method, as a nonparametric grouping-based approach, that iteratively utilizes grouping of genotypes with the smallest difference into a new group, and the other is the Bayesian method that draws inferences about the genetic interaction effects based on their marginal posterior distributions and attains the marginalization of the joint posterior distribution through Gibbs sampling as a Markov chain Monte Carlo. Further developing appropriate and efficient methods for assessing genetic interactions would be urgent to achieve accurate understanding of genetic architecture for complex traits of economic animals.

Estimation of Covariance Functions for Growth of Angora Goats

  • Liu, Wenzhong;Zhang, Yuan;Zhou, Zhongxiao
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.7
    • /
    • pp.931-936
    • /
    • 2009
  • Body weights of 862 Angora goats between birth and 36 months of age, recorded on a semiyearly basis from 1988 to 2000, were used to estimate genetic, permanent environmental and phenotypic covariance functions. These functions were estimated by fitting a random regression model with 6th order polynomial for direct additive genetic and animal permanent environmental effects and 4th and 5th order polynomial for maternal genetic and permanent environmental effects, respectively. A phenotypic covariance function was estimated by modelling overall animal and maternal effects. The results showed that the most variable coefficient was the intercept for both direct and maternal additive genetic effects. The direct additive genetic (co)variances increased with age and reached a maximum at about 30 months, whereas the maternal additive genetic (co)variances increased rapidly from birth and reached a maximum at weaning, and then decreased with age. Animal permanent environmental (co)variances increased with age from birth to 30 months with lower rate before 12 months and higher rate between 12 and 30 months. Maternal permanent environmental (co)variances changed little before 6 months but then increased slowly and reached a maximum at about 30 months. These results suggested that the contribution of maternal additive genetic and permanent environmental effects to growth variation differed from those of direct additive genetic and animal permanent environmental effects not only in expression time, but also in action magnitude. The phenotypic (co)variance estimates increased with age from birth to 36 months of age.

Average Direct and Maternal Genetic Effects and Heterosis Effects on Body Weight in Two Subspecies of Mice

  • Kurnianto, Edy;Shinjo, Akihisa;Suga, Daisuke
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.5
    • /
    • pp.475-479
    • /
    • 1998
  • Data on body weights were analyzed in the four genetic groups from all possible crosses of two subspecies of mice to estimate average direct genetic effects (ADGE), average maternal genetic effects (AMGE) and heterotic effect (HE). The genetic groups used were $CF_{{\sharp}1}$ laboratory mouse (Mus musculus domesticus), Yonakuni wild mouse (Yk, Mus musculus molossinus yonakuni) and two reciprocal $F_1$ crosses of them, CY and YC. First symbol in the reciprocal $F_1$ represent subspecies of dam. Body weight at 1 (Wk1), 3 (Wk3), 6 (Wk6) and 10 weeks of age (Wk10) were analyzed from 258 mice of the four genetic groups. The model used to evaluate body weights included main effects of genetic group and sex, and interaction effect between genetic group and sex. The ADGE and the AMGE were estimated as deviations of Yk from $CF_{{\sharp}1}$. The HE was estimated from the differences between the reciprocal $F_1$ and the midparent mean. Results of this study showed that all effects, except sex and interaction between genetic group and sex at Wk1 and Wk3, were highly significant source variation (p < 0.01). The ADGE were positive and highly significant (p < 0.01) at all ages studied for both sexes, while the AMGE were highly significant at Wk3, Wk6 and Wk10. The ADGE were larger in contributing effect on body weight differences than the AMGE. The positive value of the HE were observed at all ages for males, while for females the positive effects occured from birth through weaning.

An Analytical Approach to Sire-by-Year Interactions in Direct and Maternal Genetic Evaluation

  • Lee, C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.4
    • /
    • pp.441-444
    • /
    • 1998
  • The negative direct-maternal genetic correlation $(r_{dm})$ for weaning weight is inflated when data are analyzed with model ignoring sire-by-year interactions (SY). An analytical study investigating the consequences of ignoring SY was undertaken. The inflation of negative correlation could be due to a functional relationship of design matrices for additive direct and maternal genetic effects to that for sire effects within which SY effects were nested. It was proven that the maternal genetic variance was inflated by the amount of reduction for sire variance; the direct genetic variance was inflated by four times the change for maternal genetic variance; and the direct-maternal genetic covariance was deflated by twice the change for maternal genetic variance. The findings were agreed to the results in previous studies.

Genetic association between sow longevity and social genetic effects on growth in pigs

  • Hong, Joon Ki;Kim, Yong Min;Cho, Kyu Ho;Cho, Eun Seok;Lee, Deuk Hwan;Choi, Tae Jeong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.8
    • /
    • pp.1077-1083
    • /
    • 2019
  • Objective: Sow longevity is important for efficient and profitable pig farming. Recently, there has been an increasing interest in social genetic effect (SGE) of pigs on stress-tolerance and behavior. The present study aimed to estimate genetic correlations among average daily gain (ADG), stayability (STAY), and number of piglets born alive at the first parity (NBA1) in Korean Yorkshire pigs, using a model including SGE. Methods: The phenotypic records of ADG and reproductive traits of 33,120 and 11,654 pigs, respectively, were evaluated. The variances and (co) variances of the studied traits were estimated by a multi-trait animal model applying the Bayesian with linear-threshold models using Gibbs sampling. Results: The direct and SGEs on ADG had a significantly negative (-0.30) and neutral (0.04) genetic relationship with STAY, respectively. In addition, the genetic correlation between the social effects on ADG and NBA1 tended to be positive (0.27), unlike the direct effects (-0.04). The genetic correlation of the total effect on ADG with that of STAY was negative (-0.23) but non-significant, owing to the social effect. Conclusion: These results suggested that total genetic effect on growth in the SGE model might reduce the negative effect on sow longevity because of the growth potential of pigs. We recommend including social effects as selection criteria in breeding programs to obtain satisfactory genetic changes in both growth and longevity.

Estimation of Genetic Parameters for Direct, Maternal and Grandmatemal Genetic Effects for Birth, Weaning and Six Month Weights of Hanwoo (Korean Cattle)

  • Choi, S.B.;Lee, J.W.;Kim, N.S.;Na, S.H.;Keown, J.F.;Van Vleck, L.D.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.2
    • /
    • pp.149-154
    • /
    • 2000
  • The objectives of this study of Hanwoo (Korean Cattle) were 1) to estimate genetic parameters for direct and maternal genetic effects for birth weight, weaning weight, and six months weight which can be used for genetic evaluations and 2) to compare models with and without grandmatemal effects. Data were obtained from the National Livestock Research Institute in Rural Development Administration (RDA) of Korea and were used to estimate genetic parameters for birth weight (BW, n=10,889), weaning weight at 120-d (WW, n=8,637), and six month weight (W6, n=8,478) in Hanwoo. Total number of animals in pedigrees was 14,949. A single-trait animal model was initially used to obtain starting values for multiple-trait animal models. Estimates of genetic parameters were obtained with MTDFREML using animal models and derivative-free REML (Boldman et al., 1995). Estimates of direct heritability for BW, WW, and W6 analyzed as single-traits were 0.09, 0.03, and 0.02 from Model 3 which included direct and maternal genetic, maternal permanental environmental effects, and effects due to sire ${\times}$ region ${\times}$ year-season interaction, respectively. Ignoring sire ${\times}$ region ${\times}$ year-season interaction effect in the model (Model 2) resulted in larger estimates for direct heritability than for Model 3. Estimates of maternal heritability for BW, WW and W6 were 0.04, 0.05, and 0.07 from Model 3, respectively. The estimates of direct-maternal genetic correlation were positive for BW, WW, and W6 with Model 3 but were negative with Model 2 for WW and W6. Estimates of direct genetic correlations between BW and WW, BW and W6, and WW and W6 were large: 0.52, 0.45, and 0.90, respectively. Genetic correlations were also large and positive for maternal effects for BW with maternal effects for WW and W6 (0.69 and 0.74), and even larger for WW with W6 (0.97). The log likelihood values were the same for models including grandmatemal effects as for models including maternal effects for all traits. These results indicate that grandmatemal effects are not important for these traits for Hanwoo or that the data structure was not adequate for estimating parameters for a grandmatemal model.

Maternal and Direct Genetic Parameters for Production Traits and Maternal Correlations among Production and Feed Efficiency Traits in Duroc Pigs

  • Hoque, M.A.;Kadowaki, H.;Shibata, T.;Suzuki, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.7
    • /
    • pp.961-966
    • /
    • 2008
  • Direct and maternal genetic parameters for production traits in 1,642 pigs and maternal genetic correlations among production (1,642 pigs) and feed efficiency (380 boars) traits were estimated in 7 generations of a Duroc population. Traits studied were daily gain (DG), intramuscular fat (IMF), loineye area (LEA), backfat thickness (BF), daily feed intake (FI), feed conversion ratio (FCR) and residual feed intake (RFI). The RFI was calculated as the difference between actual and predicted feed intake. The predicted feed intake was estimated by adjusting the initial test weight, DG and BF. Data for production traits were analyzed using four alternative animal models (including direct, direct+maternal permanent environmental, or direct+maternal genetic+maternal permanent environmental effects). Direct heritability estimates from the model including direct and all maternal effects were $0.41{\pm}0.04$ for DG, $0.27{\pm}0.04$ for IMF, $0.52{\pm}0.06$ for LEA and $0.64{\pm}0.04$ for BF. Estimated maternal heritabilities ranged from $0.04{\pm}0.04$ to $0.15{\pm}0.05$ for production traits. Antagonistic relationships were observed between direct and maternal genetic effects ($r_{am}$) for LEA (-0.21). Maternal genetic correlations of feed efficiency traits with FI ($r_g$ of FI with FCR and RFI were $0.73{\pm}0.06$ and $0.90{\pm}0.05$, respectively) and LEA (rg of LEA with FCR and RFI were $-0.48{\pm}0.05$ to $-0.61{\pm}0.05$, respectively) were favorable. The estimated moderate genetic correlations between direct and maternal genetic effects for IMF and LEA indicated that maternal effects has an important role in these traits, and should be accounted for in the genetic evaluation system.

Estimation of Genetic Parameters for Direct and Maternal Effects on Litter Size and Teat Numbers in Korean Seedstock Swine Population

  • Song, Guy-Bong;Lee, Jun-Ho;Lee, Deuk-Hwan
    • Journal of Animal Science and Technology
    • /
    • v.52 no.3
    • /
    • pp.187-190
    • /
    • 2010
  • The objective of this study was to estimate genetic parameters for total number of born (TNB), number of born alive (NBA) and teat numbers (TN) of Landrace and Yorkshire breeds in Korean swine population using multiple trait animal model procedures. Total numbers of 4,653 records for teat numbers and 8,907 records for TNB and NBA collected from 2004 to 2008 on imported breeding pigs and their litter size records were used in this study. To find the appropriate model for estimation of genetic parameters (heritabilities and genetic correlations), five statistical models (two models for reproductive traits, two models for teat numbers, one model for combining these traits) considering only direct additive genetic effects, including maternal effects were used and Akaike information criteria (AIC) of each two models for reproductive traits and teat trait were compared. The means and standard deviations of TNB, NBA, and TN were $11.52{\pm}3.34$, $10.55{\pm}2.96$ and $14.30{\pm}0.83$, respectively. Estimated heritabilities for TNB and NBA traits using the model which considered only additive genetic effect were low (0.06 and 0.05, respectively). However, estimated heritabilities considering maternal genetic effects were a little bit higher than that of the model considering only additive genetic effect (0.09 for TNB and NBA, respectively). Estimated heritability for TN using the model which considered only additive genetic effect was 0.40. However, estimated heritability of direct genetic effects from a model considering maternal genetic effect was high (0.60). All results of AIC statistics, the models considering maternal effect was more appropriate than the models considering only additive genetic effect. Genetic correlations of direct additive genetic effect between litter size (TNB, NBA) and teat numbers were low (-0.18 and -0.14, respectively). However, genetic correlations of maternal effect between litter size (TNB, NBA) and teat numbers were a little bit higher than those of direct additive genetic effect (0.08 and 0.16, respectively).