Data containing 14,188 lactation and reproductive records of Korean Holstein cows at first parity distributed across 3,734 herd-year-season groups were analyzed to get genetic (co)variance estimates for milk yield, fat yield, calving ease, and days open. Milk and Fat yields were adjusted to 305 d. Heritabilities and genetic correlations were estimated in two different animal models on which were included direct genetic effects (Model 1) and direct+maternal genetic effects (Model 2) using REML algorithms. Milk and fat yields were affected by age at first calving as linear and quadratic. Heritability estimates of direct effects were 0.25 for milk yield, 0.17 for fat yield, 0.03 for calving ease and 0.03 for days open in Model 2. These estimates for maternal effects were 0.05, 0.08, 0.04 and less than 0.01 for each corresponding trait. Milk productions at first lactation were to show genetically favorable correlation with calving ease and days open for direct genetic effects (-0.24 - -0.11). Moreover, calving ease was correlated with days open of 0.30 for direct genetic effects. Correlations between direct and maternal effects for each trait were negatively correlated (-0.63 - -0.32). This study suggested that maternal additive genetic variance would be not ignorable for genetic evaluation of milk production as well as reproductive traits such as calving ease and days open at first parity. Furthermore, difficult calving would genetically influence the next conception.
Genetic parameters for birth weights (BWT), calving ease scores observed from calves born by heifers (CEH), and calving ease scores observed from calves born by cows (CEC) were estimated using Bayesian methodology with Gibbs sampling in different threshold animal models. Data consisted of 77,458 records for calving ease scores and birth weights in Gelbvieh cattle. Gibbs samplers were used to obtain the parameters of interest for the categorical traits in two univariate threshold animal models, a bivariate threshold animal model, and a three-trait linear-threshold animal model. Samples of heritabilities and genetic correlations were calculated from the posterior means of dispersion parameters. In a univariate threshold animal model with CEH (model 1), the posterior means of heritabilities for calving ease was 0.35 for direct genetic effects and 0.18 for maternal genetic effects. In the other univariate threshold model with CEC (model 2), the posterior means of heritabilities of CEC was 0.28 for direct genetic effects and 0.18 for maternal genetic effects. In a bivariate threshold model with CEH and CEC (model 3), heritability estimates were similar to those in unvariate threshold models. In this model, genetic correlation between heifer calving ease and cow calving ease was 0.89 and 0.87 for direct genetic effect and maternal genetic effects, respectively. In a three-trait animal model, which contained two categorical traits (CEH and CEC) and one continuous trait (BWT) (model 4), heritability estimates of CEH and CEC for direct (maternal) genetic effects were 0.40 (0.23) and 0.23 (0.13), respectively. In this model, genetic correlation estimates between CEH and CEC were 0.89 and 0.66 for direct genetic effects and maternal effects, respectively. These estimates were greater than estimates between BWT and CEH (0.82 and 0.34) or BWT and CEC (0.85 and 0.26). This result indicates that CEH and CEC should be high correlated rather than estimates between calving ease and birth weight. Genetic correlation estimates between direct genetic effects and maternal effects were -0.29, -0.31 and 0.15 for BWT, CEH and CEC, respectively. Correlation for permanent environmental effects between BWT and CEC was -0.83 in model 4. This study can provide genetic evaluation for calving ease with other continuous traits jointly with assuming that calving ease from first calving was a same trait to calving ease from later parities calving. Further researches for reliability of dispersion parameters would be needed even if the more correlated traits would be concerned in the model, the higher reliability could be obtained, especially on threshold model with property that categorical traits have little information.
Estimating genetic interaction effects in animal genomics would be one of the most challenging studies because the phenotypic variation for economically important traits might be largely explained by interaction effects among multiple nucleotide sequence variants under various environmental exposures. Genetic improvement of economic animals would be expected by understanding multi-locus genetic interaction effects associated with economic traits. Most analyses in animal breeding and genetics, however, have excluded the possibility of genetic interaction effects in their analytical models. This review discusses a historical estimation of the genetic interaction and difficulties in analyzing the interaction effects. Furthermore, two recently developed methods for assessing genetic interactions are introduced to animal genomics. One is the restricted partition method, as a nonparametric grouping-based approach, that iteratively utilizes grouping of genotypes with the smallest difference into a new group, and the other is the Bayesian method that draws inferences about the genetic interaction effects based on their marginal posterior distributions and attains the marginalization of the joint posterior distribution through Gibbs sampling as a Markov chain Monte Carlo. Further developing appropriate and efficient methods for assessing genetic interactions would be urgent to achieve accurate understanding of genetic architecture for complex traits of economic animals.
Body weights of 862 Angora goats between birth and 36 months of age, recorded on a semiyearly basis from 1988 to 2000, were used to estimate genetic, permanent environmental and phenotypic covariance functions. These functions were estimated by fitting a random regression model with 6th order polynomial for direct additive genetic and animal permanent environmental effects and 4th and 5th order polynomial for maternal genetic and permanent environmental effects, respectively. A phenotypic covariance function was estimated by modelling overall animal and maternal effects. The results showed that the most variable coefficient was the intercept for both direct and maternal additive genetic effects. The direct additive genetic (co)variances increased with age and reached a maximum at about 30 months, whereas the maternal additive genetic (co)variances increased rapidly from birth and reached a maximum at weaning, and then decreased with age. Animal permanent environmental (co)variances increased with age from birth to 30 months with lower rate before 12 months and higher rate between 12 and 30 months. Maternal permanent environmental (co)variances changed little before 6 months but then increased slowly and reached a maximum at about 30 months. These results suggested that the contribution of maternal additive genetic and permanent environmental effects to growth variation differed from those of direct additive genetic and animal permanent environmental effects not only in expression time, but also in action magnitude. The phenotypic (co)variance estimates increased with age from birth to 36 months of age.
Data on body weights were analyzed in the four genetic groups from all possible crosses of two subspecies of mice to estimate average direct genetic effects (ADGE), average maternal genetic effects (AMGE) and heterotic effect (HE). The genetic groups used were $CF_{{\sharp}1}$ laboratory mouse (Mus musculus domesticus), Yonakuni wild mouse (Yk, Mus musculus molossinus yonakuni) and two reciprocal $F_1$ crosses of them, CY and YC. First symbol in the reciprocal $F_1$ represent subspecies of dam. Body weight at 1 (Wk1), 3 (Wk3), 6 (Wk6) and 10 weeks of age (Wk10) were analyzed from 258 mice of the four genetic groups. The model used to evaluate body weights included main effects of genetic group and sex, and interaction effect between genetic group and sex. The ADGE and the AMGE were estimated as deviations of Yk from $CF_{{\sharp}1}$. The HE was estimated from the differences between the reciprocal $F_1$ and the midparent mean. Results of this study showed that all effects, except sex and interaction between genetic group and sex at Wk1 and Wk3, were highly significant source variation (p < 0.01). The ADGE were positive and highly significant (p < 0.01) at all ages studied for both sexes, while the AMGE were highly significant at Wk3, Wk6 and Wk10. The ADGE were larger in contributing effect on body weight differences than the AMGE. The positive value of the HE were observed at all ages for males, while for females the positive effects occured from birth through weaning.
The negative direct-maternal genetic correlation $(r_{dm})$ for weaning weight is inflated when data are analyzed with model ignoring sire-by-year interactions (SY). An analytical study investigating the consequences of ignoring SY was undertaken. The inflation of negative correlation could be due to a functional relationship of design matrices for additive direct and maternal genetic effects to that for sire effects within which SY effects were nested. It was proven that the maternal genetic variance was inflated by the amount of reduction for sire variance; the direct genetic variance was inflated by four times the change for maternal genetic variance; and the direct-maternal genetic covariance was deflated by twice the change for maternal genetic variance. The findings were agreed to the results in previous studies.
Objective: Sow longevity is important for efficient and profitable pig farming. Recently, there has been an increasing interest in social genetic effect (SGE) of pigs on stress-tolerance and behavior. The present study aimed to estimate genetic correlations among average daily gain (ADG), stayability (STAY), and number of piglets born alive at the first parity (NBA1) in Korean Yorkshire pigs, using a model including SGE. Methods: The phenotypic records of ADG and reproductive traits of 33,120 and 11,654 pigs, respectively, were evaluated. The variances and (co) variances of the studied traits were estimated by a multi-trait animal model applying the Bayesian with linear-threshold models using Gibbs sampling. Results: The direct and SGEs on ADG had a significantly negative (-0.30) and neutral (0.04) genetic relationship with STAY, respectively. In addition, the genetic correlation between the social effects on ADG and NBA1 tended to be positive (0.27), unlike the direct effects (-0.04). The genetic correlation of the total effect on ADG with that of STAY was negative (-0.23) but non-significant, owing to the social effect. Conclusion: These results suggested that total genetic effect on growth in the SGE model might reduce the negative effect on sow longevity because of the growth potential of pigs. We recommend including social effects as selection criteria in breeding programs to obtain satisfactory genetic changes in both growth and longevity.
The objectives of this study of Hanwoo (Korean Cattle) were 1) to estimate genetic parameters for direct and maternal genetic effects for birth weight, weaning weight, and six months weight which can be used for genetic evaluations and 2) to compare models with and without grandmatemal effects. Data were obtained from the National Livestock Research Institute in Rural Development Administration (RDA) of Korea and were used to estimate genetic parameters for birth weight (BW, n=10,889), weaning weight at 120-d (WW, n=8,637), and six month weight (W6, n=8,478) in Hanwoo. Total number of animals in pedigrees was 14,949. A single-trait animal model was initially used to obtain starting values for multiple-trait animal models. Estimates of genetic parameters were obtained with MTDFREML using animal models and derivative-free REML (Boldman et al., 1995). Estimates of direct heritability for BW, WW, and W6 analyzed as single-traits were 0.09, 0.03, and 0.02 from Model 3 which included direct and maternal genetic, maternal permanental environmental effects, and effects due to sire ${\times}$ region ${\times}$ year-season interaction, respectively. Ignoring sire ${\times}$ region ${\times}$ year-season interaction effect in the model (Model 2) resulted in larger estimates for direct heritability than for Model 3. Estimates of maternal heritability for BW, WW and W6 were 0.04, 0.05, and 0.07 from Model 3, respectively. The estimates of direct-maternal genetic correlation were positive for BW, WW, and W6 with Model 3 but were negative with Model 2 for WW and W6. Estimates of direct genetic correlations between BW and WW, BW and W6, and WW and W6 were large: 0.52, 0.45, and 0.90, respectively. Genetic correlations were also large and positive for maternal effects for BW with maternal effects for WW and W6 (0.69 and 0.74), and even larger for WW with W6 (0.97). The log likelihood values were the same for models including grandmatemal effects as for models including maternal effects for all traits. These results indicate that grandmatemal effects are not important for these traits for Hanwoo or that the data structure was not adequate for estimating parameters for a grandmatemal model.
Direct and maternal genetic parameters for production traits in 1,642 pigs and maternal genetic correlations among production (1,642 pigs) and feed efficiency (380 boars) traits were estimated in 7 generations of a Duroc population. Traits studied were daily gain (DG), intramuscular fat (IMF), loineye area (LEA), backfat thickness (BF), daily feed intake (FI), feed conversion ratio (FCR) and residual feed intake (RFI). The RFI was calculated as the difference between actual and predicted feed intake. The predicted feed intake was estimated by adjusting the initial test weight, DG and BF. Data for production traits were analyzed using four alternative animal models (including direct, direct+maternal permanent environmental, or direct+maternal genetic+maternal permanent environmental effects). Direct heritability estimates from the model including direct and all maternal effects were $0.41{\pm}0.04$ for DG, $0.27{\pm}0.04$ for IMF, $0.52{\pm}0.06$ for LEA and $0.64{\pm}0.04$ for BF. Estimated maternal heritabilities ranged from $0.04{\pm}0.04$ to $0.15{\pm}0.05$ for production traits. Antagonistic relationships were observed between direct and maternal genetic effects ($r_{am}$) for LEA (-0.21). Maternal genetic correlations of feed efficiency traits with FI ($r_g$ of FI with FCR and RFI were $0.73{\pm}0.06$ and $0.90{\pm}0.05$, respectively) and LEA (rg of LEA with FCR and RFI were $-0.48{\pm}0.05$ to $-0.61{\pm}0.05$, respectively) were favorable. The estimated moderate genetic correlations between direct and maternal genetic effects for IMF and LEA indicated that maternal effects has an important role in these traits, and should be accounted for in the genetic evaluation system.
The objective of this study was to estimate genetic parameters for total number of born (TNB), number of born alive (NBA) and teat numbers (TN) of Landrace and Yorkshire breeds in Korean swine population using multiple trait animal model procedures. Total numbers of 4,653 records for teat numbers and 8,907 records for TNB and NBA collected from 2004 to 2008 on imported breeding pigs and their litter size records were used in this study. To find the appropriate model for estimation of genetic parameters (heritabilities and genetic correlations), five statistical models (two models for reproductive traits, two models for teat numbers, one model for combining these traits) considering only direct additive genetic effects, including maternal effects were used and Akaike information criteria (AIC) of each two models for reproductive traits and teat trait were compared. The means and standard deviations of TNB, NBA, and TN were $11.52{\pm}3.34$, $10.55{\pm}2.96$ and $14.30{\pm}0.83$, respectively. Estimated heritabilities for TNB and NBA traits using the model which considered only additive genetic effect were low (0.06 and 0.05, respectively). However, estimated heritabilities considering maternal genetic effects were a little bit higher than that of the model considering only additive genetic effect (0.09 for TNB and NBA, respectively). Estimated heritability for TN using the model which considered only additive genetic effect was 0.40. However, estimated heritability of direct genetic effects from a model considering maternal genetic effect was high (0.60). All results of AIC statistics, the models considering maternal effect was more appropriate than the models considering only additive genetic effect. Genetic correlations of direct additive genetic effect between litter size (TNB, NBA) and teat numbers were low (-0.18 and -0.14, respectively). However, genetic correlations of maternal effect between litter size (TNB, NBA) and teat numbers were a little bit higher than those of direct additive genetic effect (0.08 and 0.16, respectively).
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.