• 제목/요약/키워드: Genetic algorithm optimization

검색결과 1,871건 처리시간 0.029초

유전자 알고리듬을 이용한 선박용 파이프 경로 최적화 (Ship Pipe Layout Optimization using Genetic Algorithm)

  • 박철우;천호정
    • 한국정밀공학회지
    • /
    • 제29권4호
    • /
    • pp.469-478
    • /
    • 2012
  • This study aims to discover the optimal pipe layout for a ship, which generally needs a lot of time, efforts and experiences. Genetic algorithm was utilized to search for the optimum. Here the optimum stands for the minimum pipe length between two given points. Genetic algorithm is applied to planar pipe layout problems to confirm plausible and efficiency. Sub-programs are written to find optimal layout for the problems. Obstacles are laid in between the starting point and the terminal point. Pipe is supposed to bypass those obstacles. Optimal layout between the specified two points can be found using the genetic algorithm. Each route was searched for three case models in two-dimensional plane. In consequence of this, it discovered the optimum route with the minimized distance in three case models. Through this study, it is possible to apply optimization of ship pipe route to an actual ship using genetic algorithm.

Optimal placement of piezoelectric actuators and sensors on a smart beam and a smart plate using multi-objective genetic algorithm

  • Nestorovic, Tamara;Trajkov, Miroslav;Garmabi, Seyedmehdi
    • Smart Structures and Systems
    • /
    • 제15권4호
    • /
    • pp.1041-1062
    • /
    • 2015
  • In this paper a method of finding optimal positions for piezoelectric actuators and sensors on different structures is presented. The genetic algorithm and multi-objective genetic algorithm are selected for optimization and $H_{\infty}$ norm is defined as a cost function for the optimization process. To optimize the placement concerning the selected modes simultaneously, the multi-objective genetic algorithm is used. The optimization is investigated for two different structures: a cantilever beam and a simply supported plate. Vibrating structures are controlled in a closed loop with feedback gains, which are obtained using optimal LQ control strategy. Finally, output of a structure with optimized placement is compared with the output of the structure with an arbitrary, non-optimal placement of piezoelectric patches.

망간단괴 수송선의 최적화와 경제성 평가에 관한 연구 (A Study on Optimization of Manganese Nodule Carrier and its Economic Evaluation)

  • 박재형;윤길수
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2002년도 추계학술대회 논문집
    • /
    • pp.40-44
    • /
    • 2002
  • 선박 설계시 최적화에 있어 종래에는 Random search Parametric study, Hook&Jeeves Method등이 사용되어져 왔으나 1960년대 Genetic algorithm이 소개되고 꾸준히 발전함과 함께 선박 설계에서도 Genetic algorithm이 사용되기 시작하였다. 본 논문에서는 이러한 Genetic algorithm 중 Simple Genetic algorithm(SGA), Micro Genetic algorithm(MGA), Threshold Genetic algorithm(TGA), Hybrid Genetic algorithm(HGA)을 선박 설계에 적용하여 그 성능을 비교 검토해 보았다. MGA는 계산 부담을 줄이기 위해 작은 개체로 효율적인 탐색을 하며, TGA는 local optimum에서 쉽게 벗어나게 할 수 있는 특징이 있다. HGA는 Hook&Jeeves Method를 Genetic algorithm과 병합되어 있다. 이를 바탕으로 본 논문에서 망간단괴 수송선의 경제성을 평가한다. 평가 방법은 연간 300만톤을 생산한다고 가정하여 연간 운송 용적을 동호제약으로 해서 최적화를 한 뒤, 이를 이용하여 몇가지 Case로 나누어서 초기 자본, 연간 비용, 20년간 총 비용을 계산하여 가장 경제적인 선박을 선택한다.

  • PDF

Mendel의 법칙을 이용한 새로운 유전자 알고리즘 (A Mew Genetic Algorithm based on Mendel's law)

  • 정우용;김은태;박민용
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.376-378
    • /
    • 2004
  • Genetic algorithm was motivated by biological evaluation and has been applied to many industrial applications as a powerful tool for mathematical optimizations. In this paper, a new genetic optimization algorithm is proposed. The proposed method is based on Mendel's law, especially dominance and recessive property. Homologous chromosomes are introduced to implement dominance and recessive property compared with the standard genetic algorithm. Because of this property of suggested genetic algorithm, homologous chromosomes looks like the chromosomes for the standard genetic algorithm, so we can use most of existing genetic operations with little effort. This suggested method searches the larger solution area with the less probability of the premature convergence than the standard genetic algorithm.

  • PDF

유전자 알고리즘을 이용한 트러스의 최적설계 (Optimum Design of Trusses Using Genetic Algorithms)

  • 김봉익;권중현
    • 한국해양공학회지
    • /
    • 제17권6호
    • /
    • pp.53-57
    • /
    • 2003
  • Optimum design of most structural system requires that design variables are regarded as discrete quantities. This paper presents the use of Genetic Algorithm for determining the optimum design for truss with discrete variables. Genetic Algorithm are know as heuristic search algorithms, and are effective global search methods for discrete optimization. In this paper, Elitism and the method of conferring penalty parameters in the design variables, in order to achieve improved fitness in the reproduction process, is used in the Genetic Algorithm. A 10-Bar plane truss and a 25-Bar space truss are used for discrete optimization. These structures are designed for stress and displacement constraints, but buckling is not considered. In particular, we obtain continuous solution using Genetic Algorithms for a 10-bar truss, compared with other results. The effectiveness of Genetic Algorithms for global optimization is demonstrated through two truss examples.

Design Centering by Genetic Algorithm and Coarse Simulation

  • Jinkoo Lee
    • 한국CDE학회논문집
    • /
    • 제2권4호
    • /
    • pp.215-221
    • /
    • 1997
  • A new approach in solving design centering problem is presented. Like most stochastic optimization problems, optimal design centering problems have intrinsic difficulties in multivariate intergration of probability density functions. In order to avoid to avoid those difficulties, genetic algorithm and very coarse Monte Carlo simulation are used in this research. The new algorithm performs robustly while producing improved yields. This result implies that the combination of robust optimization methods and approximated simulation schemes would give promising ways for many stochastic optimizations which are inappropriate for mathematical programming.

  • PDF

병렬 마이크로 유전자 알고리즘을 이용한 복합재 적층 구조물의 최적설계 (Optimal Design of Laminated Stiffened Composite Structures using a parallel micro Genetic Algorithm)

  • 이무근;김천곤
    • Composites Research
    • /
    • 제21권1호
    • /
    • pp.30-39
    • /
    • 2008
  • 본 논문에서는 기존의 유전자 알고리즘을 대신하여 병렬 마이크로 유전자 알고리즘을 사용한 복합재료 적층 구조물의 최적설계를 수행하였다. 마이크로 유전자 알고리즘은 한 세대 당 보통 5개의 개체로 해를 탐색한다 비록 세대를 구성하는 인구수는 적지만 공칭수렴 판단과 재초기화 과정을 통해 다양성을 제공하기 때문에 최적해 탐색이 가능하다. 2가지의 복합재 구조물의 최적화 문제를 가정하고 이를 마이크로 유전자 알고리즘을 사용하여 해를 구하였다. 효율성 판단을 위해서 기존의 유전자 알고리즘과 결과를 비교하였다. 두 문제 모두 마이크로 유전자 알고리즘이 비슷한 결과를 도출하면서도 약 70%의 계산량 감소를 보였다. 마이크로 유전자 알고리즘을 사용하여 일정 범위 내에서 변하는 하중을 받고 있는 복합재 적층 구조물의 최적설계를 수행하였다. 계산 결과 고정된 하중상태 하에서 얻은 최적해보다 하중 변화에 덜 민감한 설계변수를 얻을 수 있었다. 이상의 문제를 통해 다양한 설계변수를 갖는 복합재 적층 구조물의 최적설계의 한 방법으로서 마이크로 유전자 알고리즘이 효율적임을 확인하였다.

유전자 알고리즘을 이용한 동적 구조물의 가속도 최적화 (Acceleration Optimization of a Dynamic Structure Using a Genetic Algorithm)

  • 정원지;박창권;홍대선
    • 한국공작기계학회논문집
    • /
    • 제13권2호
    • /
    • pp.25-32
    • /
    • 2004
  • This paper presents a new optimization technique of acceleration curve for dynamic structure's movement in which high speed and low vibration are desirable. This technique is based on a genetic algerian with a penalty function for acceleration optimization under the assumption that an initial profile of acceleration curves constitutes the first generation of the genetic algorithm. Especially the penalty function consists of the violation of constraints and the number of violated constraints. The optimized acceleration of the crane through the genetic algorithm and commercial dynamic analysis software has shown to have accurate movement and low vibration compared to the conventional accelerations with jerk discontinuity.

연속 최적화 문제에 대한 수렴성이 개선된 순차적 주밍 유전자 알고리듬 (Convergence Enhanced Successive Zooming Genetic Algorithm far Continuous Optimization Problems)

  • 권영두;권순범;구남서;진승보
    • 대한기계학회논문집A
    • /
    • 제26권2호
    • /
    • pp.406-414
    • /
    • 2002
  • A new approach, referred to as a successive zooming genetic algorithm (SZGA), is Proposed for identifying a global solution for continuous optimization problems. In order to improve the local fine-tuning capability of GA, we introduced a new method whereby the search space is zoomed around the design point with the best fitness per 100 generation. Furthermore, the reliability of the optimized solution is determined based on the theory of probability. To demonstrate the superiority of the proposed algorithm, a simple genetic algorithm, micro genetic algorithm, and the proposed algorithm were tested as regards for the minimization of a multiminima function as well as simple functions. The results confirmed that the proposed SZGA significantly improved the ability of the algorithm to identify a precise global minimum. As an example of structural optimization, the SZGA was applied to the optimal location of support points for weight minimization in the radial gate of a dam structure. The proposed algorithm identified a more exact optimum value than the standard genetic algorithms.

유전자 알고리듬을 이용한 자동차용 Mirror Actuator의 최적설계 (Genetic Algorithm Based Optimal Design for an Automobile Mirror Actuator)

  • 박원호;김재실;최헌오
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.559-564
    • /
    • 2001
  • The design of an automobile mirror actuator system needs a systematic optimization due to several variables, constraints, geometric limitations, moving angle, and so on. Therefore, this article provides the procedure of a genetic algorithm(GA) based optimization with finite element analysis for design of a mirror actuator considering design constraints, geometric limitations, moving angle. Local optimum problem in optimization design with sensitivity analysis is overcome by using zero-order overall searching method which is new optimization design method using a genetic algorithm.

  • PDF