Proceedings of the Korea Water Resources Association Conference
/
2017.05a
/
pp.116-116
/
2017
지하수 인공함양은 수자원확보 및 비상시 용수를 목적으로 세계적으로 연구 및 프로젝트가 진행되고 있다. 인공함양의 방법에는 여러 가지의 방식이 있지만 본 연구는 관정을 통해 주입하는 ASTR(Aquifer Storage Transfer and Recovery)방법을 이용하여 연구하였다. ASTR이란 지표수를 인공적인 방법으로 대수층에 주입시키고, 일정기간 저장시키거나 유하시킨 후 양수하는 방법이다. 염수로 포화된 피압대수층에 담수를 주입하여 염수를 치환할 수 있는 주입-양수 시스템을 연구하였다. 염수로 포화된 대수층에서 인공함양기술을 성공시키기 위해서는 양수정으로 유입되는 염수비율이 0%을 만족하며, 주입으로 인한 수위상승량은 지반변형을 일으키지 않는 최소한의 값을 가지는 것이다. 본 연구는 앞서 언급한 인공함양기술을 성공시키기 위해 지하수 흐름모델과 최적화 모델을 결합한 최적전산모델을 이용하여 모의하였다. 지하수 흐름모델은 경계면모델을, 최적화 기법은 GA(Genetic Algorithm)을 이용하였다. 구축된 목적함수로는 양수정의 담수비율 최대화, 주입정에서의 수위상승량 최소화 그리고 양수개시시간 최소화로 구성하였다. 제약조건으로는 총 주입량 및 양수량 그리고 주입 및 양수정 개수이다. 서술한 목적함수와 제약조건을 만족하는 주입/양수정의 위치 및 유량을 최적전산모델로부터 얻을 수 있다. 기존 지하수 인공함양 및 개발은 사례별 연구 또는 전문가의 주관적 판단에 의존하는 경향이 있었다. 본 연구는 최적화 기법을 통해 복수의 관정에서 정량적인 산정이 가능하다. 현재 모델링에 의존한 연구로써 한계가 있지만, 추후 실제현장에 적용하여 모델 검정을 통해 신뢰도를 높이며 지하수 인공함양 개발에 많은 공헌을 할 수 있을 것으로 예상한다.
The tendency to renewables is one of the consequences of changing attitudes towards energy issues. As a result, solar energy, which is the leader among renewable energies based on availability and potential, plays a crucial role in full filing global needs. Significant problems with the solar thermal power plants (STPP) are the operation time, which is limited by daylight and is approximately half of the power plants with fossil fuels, and the capital cost. Exergy analysis survey of STPP hybrid with PCM storage carried out using Engineering Equation Solver (EES) program with genetic algorithm (GA) for three different scenarios, based on eight decision variables, which led us to decrease final product cost (electricity) in optimized scenario up to 30% compare to base case scenario from 28.99 $/kWh to 20.27 $/kWh for the case study. Also, in the optimal third scenario of this plant, the inner carbon dioxide gas cycle produces 1200 kW power with a thermal efficiency of 59% and also 1000 m3/h water with an exergy efficiency of 23.4% and 79.70 kg/h with an overall exergy efficiency of 34% is produced in the tetrageneration plant.
Proceedings of the Korea Water Resources Association Conference
/
2017.05a
/
pp.158-158
/
2017
상수관망을 통한 용수 공급에서는 송수펌프, 배수지 등의 수리 시설물이 중요한 역할을 수행한다. 우리나라의 송 배수 방식은 송수펌프를 통해 고지대의 배수지에 물을 확보하고, 이를 자연유하 방식으로 공급하는 것이 일반적이며, 따라서 송 배수시스템의 운영이란 송수펌프의 가동과 그에 따른 배수지의 수위 현황을 관리하는 것을 의미한다. 이 때, 펌프의 가동을 위한 전력소모에 많은 비용이 발생되므로 효율적인 펌프 운영을 위한 최적화 연구의 필요성이 제기되었다. 기존 연구를 통해 송 배수시스템의 운영을 모의하고, 펌프 가동비용을 최소화 하는 실시간 최적 펌프운영 모형이 개발되었으나, 미리 결정된 펌프와 배수지를 바탕으로 송 배수시스템을 모의하기 때문에 계획 및 설계 단계에서 이를 활용할 수 없는 한계점이 존재하였다. 본 연구에서는 최적화 알고리즘 중 하나인 유전자 알고리즘(Genetic Algorithm, GA)을 사용하여, 실시간 펌프운영뿐만 아니라 송수펌프와 배수지의 효율적인 용량을 제시할 수 있는 최적화 모형을 개발하였다. 특히, 개발 모형은 펌프와 배수지의 설계/운영 시, 국내 설계기준, 시설물 비용, 시간별 전력단가 등을 제약조건으로 고려하여 현실적인 결과를 도출할 수 있도록 개발되었다. 본 연구는 실제 운영 중인 S시의 광역상수도 시스템을 바탕으로 개발 모형을 적용하였으며, 또한 송 배수시스템의 계획 및 관리에 활용할 수 있을 것으로 기대된다.
KSCE Journal of Civil and Environmental Engineering Research
/
v.30
no.5A
/
pp.399-406
/
2010
In this paper, the optimization of frictional bearings that applied to improve the seismic performance of conventional bridges were conducted. The nonlinear dynamic analysis of steel bridges and concrete bridges are carried out with the El Centro and artificial earthquake motions, and the reponses of the bridges were optimized by genetic algorithm. The object functions were considered with two parameters, such as shear forces and displacements at bearing, and the optimum object functions were searched by varying the weighting factors of the two parameters. As results, in case of the steel bridges, the optimum results were obtained when larger weight factor was imposed to the shear force. However, in case of concrete bridges, larger weight factor was need to the displacement for optimum results.
Proceedings of the Korea Information Processing Society Conference
/
2007.11a
/
pp.34-37
/
2007
Face recognition is still a challenging problem in pattern recognition field which is affected by different factors such as facial expression, illumination, pose etc. The facial feature such as eyes, nose, and mouth constitute a complete face. Mouth feature of face is under the undesirable effect of facial expression as many factors contribute the low performance. We proposed a new approach for face recognition under facial expression applying two cascaded classifiers to improve recognition rate. All facial expression images are treated by general purpose classifier at first stage. All rejected images (applying threshold) are used for adaptation using GA for improvement in recognition rate. We apply Gabor Wavelet as a general classifier and Gabor wavelet with Genetic Algorithm for adaptation under expression variance to solve this issue. We have designed, implemented and demonstrated our proposed approach addressing this issue. FERET face image dataset have been chosen for training and testing and we have achieved a very good success.
Generally, the network topology design problem is characterized as a kind of NP-hard combinatorial optimization problem, which is difficult to solve with the classical method because it has exponentially increasing complexity with the augmented network size. In this paper, we propose the efficient approach with two phase that is comprised of evolutionary computation approach based on Prufer number(PN), which can efficiently represent the spanning tree, and a heuristic method considering 2-connectivity, to solve the highly reliable network topology design problem minimizing the construction cost subject to network reliability: firstly, to find the spanning tree, genetic algorithm that is the most widely known type of evolutionary computation approach, is used; secondly, a heuristic method is employed, in order to search the optimal network topology based on the spanning tree obtained in the first Phase, considering 2-connectivity. Lastly, the performance of our approach is provided from the results of numerical examples.
The accuracy of forecasting is remarkably important to reduce total cost or to increase customer services, so it has been studied by many researchers. In this paper, the artificial neural network (ANN), one of the most popular nonlinear forecasting methods, is compared with autoregressive integrated moving average(ARIMA) model through performing a prediction of container traffic. It uses a hybrid methodology that combines both the linear ARIAM and the nonlinear ANN model to improve forecasting performance. Also, it compares the methodology with other models in performance for prediction. In designing network structure, this work specially applies the genetic algorithm which is known as the effectively optimal algorithm in the huge and complex sample space. It includes the time delayed neural network (TDNN) as well as multi-layer perceptron (MLP) which is the most popular neural network model. Experimental results indicate that both ANN and Hybrid models outperform ARIMA model.
In this paper, we present an optimization of truss structures subjected to stress, buckling, and natural frequency constraints. The main objective of the present study is to propose an efficient HA-SA algorithm for solving the truss optimization subject to multiple constraints. The procedure of hybrid HA-SA is a search method which a design values in harmony memory of harmony search are used as an initial value designs in simulated annealing search method. The efficient optimization of HA-SA is illustrated through several optimization examples. The examples of truss structures are used 10-Bar truss, 52-Bar truss (Dome), and 72-Bar truss for natural frequency constraints, and used 18-Bar truss and 47-Bar (Tower) truss for stress and buckling constraints. The optimum results are compared to those of different techniques. The numerical results are demonstrated the advantages of the HA-SA algorithm in truss optimization with multiple constraints.
Alfaidi, Aseel;Alshahrani, Abdullah;Aljohani, Maha
International Journal of Computer Science & Network Security
/
v.22
no.9
/
pp.195-207
/
2022
COVID-19 has remained one of the most serious health crises in recent history, resulting in the tragic loss of lives and significant economic impacts on the entire world. The difficulty of controlling COVID-19 poses a threat to the global health sector. Considering that Artificial Intelligence (AI) has contributed to improving research methods and solving problems facing diverse fields of study, AI algorithms have also proven effective in disease detection and early diagnosis. Specifically, acoustic features offer a promising prospect for the early detection of respiratory diseases. Motivated by these observations, this study conceptualized a speech-based diagnostic model to aid in COVID-19 diagnosis. The proposed methodology uses speech signals from confirmed positive and negative cases of COVID-19 to extract features through the pre-trained Visual Geometry Group (VGG-16) model based on Mel spectrogram images. This is used in addition to the K-means algorithm that determines effective features, followed by a Genetic Algorithm-Support Vector Machine (GA-SVM) classifier to classify cases. The experimental findings indicate the proposed methodology's capability to classify COVID-19 and NOT COVID-19 of varying ages and speaking different languages, as demonstrated in the simulations. The proposed methodology depends on deep features, followed by the dimension reduction technique for features to detect COVID-19. As a result, it produces better and more consistent performance than handcrafted features used in previous studies.
Shiguan Chen;Huimei Zhang;Kseniya I. Zykova;Hamed Gholizadeh Touchaei;Chao Yuan;Hossein Moayedi;Binh Nguyen Le
Computers and Concrete
/
v.32
no.2
/
pp.217-232
/
2023
Numerous studies have been performed on the behavior of pile foundations in cold regions. This study first attempted to employ artificial neural networks (ANN) to predict pile-bearing capacity focusing on pile data recorded primarily on cold regions. As the ANN technique has disadvantages such as finding global minima or slower convergence rates, this study in the second phase deals with the development of an ANN-based predictive model improved with an Elephant herding optimizer (EHO), Dragonfly Algorithm (DA), Genetic Algorithm (GA), and Evolution Strategy (ES) methods for predicting the piles' bearing capacity. The network inputs included the pile geometrical features, pile area (m2), pile length (m), internal friction angle along the pile body and pile tip (Ø°), and effective vertical stress. The MLP model pile's output was the ultimate bearing capacity. A sensitivity analysis was performed to determine the optimum parameters to select the best predictive model. A trial-and-error technique was also used to find the optimum network architecture and the number of hidden nodes. According to the results, there is a good consistency between the pile-bearing DA-MLP-predicted capacities and the measured bearing capacities. Based on the R2 and determination coefficient as 0.90364 and 0.8643 for testing and training datasets, respectively, it is suggested that the DA-MLP model can be effectively implemented with higher reliability, efficiency, and practicability to predict the bearing capacity of piles.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.