• Title/Summary/Keyword: Genetic algorithm (GA)

Search Result 1,520, Processing Time 0.025 seconds

Data Mining using Instance Selection in Artificial Neural Networks for Bankruptcy Prediction (기업부도예측을 위한 인공신경망 모형에서의 사례선택기법에 의한 데이터 마이닝)

  • Kim, Kyoung-jae
    • Journal of Intelligence and Information Systems
    • /
    • v.10 no.1
    • /
    • pp.109-123
    • /
    • 2004
  • Corporate financial distress and bankruptcy prediction is one of the major application areas of artificial neural networks (ANNs) in finance and management. ANNs have showed high prediction performance in this area, but sometimes are confronted with inconsistent and unpredictable performance for noisy data. In addition, it may not be possible to train ANN or the training task cannot be effectively carried out without data reduction when the amount of data is so large because training the large data set needs much processing time and additional costs of collecting data. Instance selection is one of popular methods for dimensionality reduction and is directly related to data reduction. Although some researchers have addressed the need for instance selection in instance-based learning algorithms, there is little research on instance selection for ANN. This study proposes a genetic algorithm (GA) approach to instance selection in ANN for bankruptcy prediction. In this study, we use ANN supported by the GA to optimize the connection weights between layers and select relevant instances. It is expected that the globally evolved weights mitigate the well-known limitations of gradient descent algorithm of backpropagation algorithm. In addition, genetically selected instances will shorten the learning time and enhance prediction performance. This study will compare the proposed model with other major data mining techniques. Experimental results show that the GA approach is a promising method for instance selection in ANN.

  • PDF

Optimization of Structure-Adaptive Self-Organizing Map Using Genetic Algorithm (유전자 알고리즘을 사용한 구조적응 자기구성 지도의 최적화)

  • 김현돈;조성배
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.3
    • /
    • pp.223-230
    • /
    • 2001
  • Since self-organizing map (SOM) preserves the topology of ordering in input spaces and trains itself by unsupervised algorithm, it is Llsed in many areas. However, SOM has a shortcoming: structure cannot be easily detcrmined without many trials-and-errors. Structure-adaptive self-orgnizing map (SASOM) which can adapt its structure as well as its weights overcome the shortcoming of self-organizing map: SASOM makes use of structure adaptation capability to place the nodes of prototype vectors into the pattern space accurately so as to make the decision boundmies as close to the class boundaries as possible. In this scheme, the initialization of weights of newly adapted nodes is important. This paper proposes a method which optimizes SASOM with genetic algorithm (GA) to determines the weight vector of newly split node. The leanling algorithm is a hybrid of unsupervised learning method and supervised learning method using LVQ algorithm. This proposed method not only shows higher performance than SASOM in terms of recognition rate and variation, but also preserves the topological order of input patterns well. Experiments with 2D pattern space data and handwritten digit database show that the proposed method is promising.

  • PDF

A Study on Estimating Construction Cost of Apartment Housing Projects Using Genetic Algorithm-Support Vector Regression (유전 알고리즘 - 서포트 벡터 회귀를 활용한 공동주택 공사비 예측에 관한 연구)

  • Nan, Jun;Choi, Jae-Woong;Choi, Hyemi;Kim, Ju-Hyung
    • Korean Journal of Construction Engineering and Management
    • /
    • v.15 no.4
    • /
    • pp.68-76
    • /
    • 2014
  • The accurate estimation of construction cost is important to a successful development in construction projects. In previous studies, the construction cost are estimated by statistical methods. Among the statistical methods, support vector regression (SVR) has attracted a lot of attentions because of the generalization ability in the field of cost estimation. However, despite the simplicity of the parameter to be adjusted, it is not easy to find optimal parameters. Therefore, to build an effective SVR model, SVR's parameters must be set properly without additional data handling loads. So this study proposes a novel approach, known as genetic algorithm (GA), which searches SVR's optimal parameters, then adopt the parameters to the SVR model for estimating cost in the early stage of apartment housing projects. The aim of this study is to propose a GA-SVR model and examine the feasibility in cost estimation by comparing with multiple regression analysis (MRA). The experimental results demonstrate the estimating performance based on the percentage of estimations within 25% and find it can effectively do the accurate estimation without through the trial and error process.

Development of an Approximate Cost Estimating Model for Bridge Construction Project using CBR Method (사례기반추론 기법을 이용한 교량 공사비 추론 모형 구축)

  • Kim, Min-Ji;Moon, Hyoun-Seok;Kang, Leen-Seok
    • Korean Journal of Construction Engineering and Management
    • /
    • v.14 no.3
    • /
    • pp.42-52
    • /
    • 2013
  • The aim of this study is to present a prediction model of construction cost for a bridge that has a high reliability using historical data from the planning phase based on a CBR (Case-Based Reasoning) method in order to overcome limitations of existing construction cost prediction methods, which is linearly estimated. To do this, a reasoning model of bridge construction cost by a spreadsheet template was suggested using complexly both CBR and GA (Genetic Algorithm). Besides, this study performed a case study to verify the suggested cost reasoning model for bridge construction projects. Measuring efficiency for a result of the case study was 8.69% on average. Since accuracy of the suggested prediction cost is relatively high compared to the other analysis methods for a prediction of construction cost, reliability of the suggested model was secured. In the case that information for detailed specifications of each bridge type in an initial design phase is difficult to be collected, the suggested model is able to predict the bridge construction cost within the minimized measuring efficiency with only the representative specifications for bridges as an improved correction method. Therefore, it is expected that the model will be used to estimate a reasonable construction cost for a bridge project.

The Optimal Project Combination for Urban Regeneration New Deal Projects (도시재생 뉴딜사업의 최적 사업지구 선정조합에 관한 연구)

  • Park, Jae Ho;Geem, Zong Woo;Yu, Jung Suk
    • Korea Real Estate Review
    • /
    • v.28 no.1
    • /
    • pp.23-37
    • /
    • 2018
  • The genetic algorithm (GA) and branch and bound (B&B) methods are the useful methods of searching the optimal project combination (combinatorial optimization) to maximize the project effect considering the budget constraint and the balance of regional development with regard to the Urban Regeneration New Deal policy, the core real estate policy of the Moon Jae-in government. The Ministry of Land, Infrastructure, and Transport (MOLIT) will choose 13 central-city-area-type projects, 2 economic-base-type projects, and 10 public-company-proposal-type projects among the numerous projects from 16 local governments while each government can apply only 4 projects, respectively, for the 2017 Urban Regeneration New Deal project. If MOLIT selects only those projects with a project effect maximization purpose, there will be unselected regions, which will harm the balance of regional development. For this reason, an optimization model is proposed herein, and a combinatorial optimization method using the GA and B&B methods should be sought to satisfy the various constraints with the object function. Going forward, it is expected that both these methods will present rational decision-making criteria if the central government allocates a special-purpose-limited budget to many local governments.

Construction Claims Prediction and Decision Awareness Framework using Artificial Neural Networks and Backward Optimization

  • Hosny, Ossama A.;Elbarkouky, Mohamed M.G.;Elhakeem, Ahmed
    • Journal of Construction Engineering and Project Management
    • /
    • v.5 no.1
    • /
    • pp.11-19
    • /
    • 2015
  • This paper presents optimized artificial neural networks (ANNs) claims prediction and decision awareness framework that guides owner organizations in their pre-bid construction project decisions to minimize claims. The framework is composed of two genetic optimization ANNs models: a Claims Impact Prediction Model (CIPM), and a Decision Awareness Model (DAM). The CIPM is composed of three separate ANNs that predict the cost and time impacts of the possible claims that may arise in a project. The models also predict the expected types of relationship between the owner and the contractor based on their behavioral and technical decisions during the bidding phase of the project. The framework is implemented using actual data from international projects in the Middle East and Egypt (projects owned by either public or private local organizations who hired international prime contractors to deliver the projects). Literature review, interviews with pertinent experts in the Middle East, and lessons learned from several international construction projects in Egypt determined the input decision variables of the CIPM. The ANNs training, which has been implemented in a spreadsheet environment, was optimized using genetic algorithm (GA). Different weights were assigned as variables to the different layers of each ANN and the total square error was used as the objective function to be minimized. Data was collected from thirty-two international construction projects in order to train and test the ANNs of the CIPM, which predicted cost overruns, schedule delays, and relationships between contracting parties. A genetic optimization backward analysis technique was then applied to develop the Decision Awareness Model (DAM). The DAM combined the three artificial neural networks of the CIPM to assist project owners in setting optimum values for their behavioral and technical decision variables. It implements an intelligent user-friendly input interface which helps project owners in visualizing the impact of their decisions on the project's total cost, original duration, and expected owner-contractor relationship. The framework presents a unique and transparent hybrid genetic algorithm-ANNs training and testing method. It has been implemented in a spreadsheet environment using MS Excel$^{(R)}$ and EVOLVERTM V.5.5. It provides projects' owners of a decision-support tool that raises their awareness regarding their pre-bid decisions for a construction project.

A Study on A Global Optimization Method for Solving Redundancy Optimization Problems in Series-Parallel Systems (직렬-병렬 시스템의 중복 설계 문제의 전역 최적화 해법에 관한 연구)

  • 김재환;유동훈
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.6 no.1
    • /
    • pp.23-33
    • /
    • 2000
  • This paper is concerned with finding the global optimal solutions for the redundancy optimization problems in series-parallel systems related with system safety. This study transforms the difficult problem, which is classified as a nonlinear integer problem, into a 0/1 IP(Integer Programming) by using binary integer variables. And the global optimal solution to this problem can be easily obtained by applying GAMS (General Algebraic Modeling System) to the transformed 0/1 IP. From computational results, we notice that GA(Genetic Algorithm) to this problem, which is, to our knowledge, known as a best algorithm, is poor in many cases.

  • PDF

Shape From Focus Algorithm with Optimization of Focus Measure for Cell Image (초점 연산자의 최적화를 통한 세포영상의 삼차원 형상 복원 알고리즘)

  • Lee, Ik-Hyun;Choi, Tae-Sun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.3 no.3
    • /
    • pp.8-13
    • /
    • 2010
  • Shape form focus (SFF) is a technique that reconstructs 3D shape of an object using image focus. Although many SFF methods have been proposed, there are still notable inaccuracy effects due to noise and non-optimization of image characteristics. In this paper, we propose a noise filter technique for noise reduction and genetic algorithm (GA) for focus measure optimization. The proposed method is analyzed with a statistical criteria such as Root Mean Square Error (RMSE) and correlation.

  • PDF

Optimum chemicals dosing control for water treatment (상수처리 수질제어를 위한 약품주입 자동연산)

  • 하대원;고택범;황희수;우광방
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.772-777
    • /
    • 1993
  • This paper presents a neuro-fuzzy modelling method that determines chemicals dosing model based on historical operation data for effective water quality control in water treatment system and calculates automatically the amount of optimum chemicals dosing against the changes of raw water qualities and flow rate. The structure identification in the modelling by means of neuro-fuzzy reasing is performed by Genetic Algorithm(GA) and Complex Method in which the numbers of hidden layer and its hidden nodes, learning rate and connection pattern between input layer and output layer are identified. The learning network is implemented utilizing Back Propagation(BP) algorithm. The effectiveness of the proposed modelling scheme and the feasibility of the acquired neuro-fuzzy network is evaluated through computer simulation for chemicals dosing control in water treatment system.

  • PDF

Optimization Algorithms for Site Facility Layout Problems Using Self-Organizing Maps

  • Park, U-Yeol;An, Sung-Hoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.6
    • /
    • pp.664-673
    • /
    • 2012
  • Determining the layout of temporary facilities that support construction activities at a site is an important planning activity, as layout can significantly affect cost, quality of work, safety, and other aspects of the project. The construction site layout problem involves difficult combinatorial optimization. Recently, various artificial intelligence(AI)-based algorithms have been applied to solving many complex optimization problems, including neural networks(NN), genetic algorithms(GA), and swarm intelligence(SI) which relates to the collective behavior of social systems such as honey bees and birds. This study proposes a site facility layout optimization algorithm based on self-organizing maps(SOM). Computational experiments are carried out to justify the efficiency of the proposed method and compare it with particle swarm optimization(PSO). The results show that the proposed algorithm can be efficiently employed to solve the problem of site layout.