Corporate financial distress and bankruptcy prediction is one of the major application areas of artificial neural networks (ANNs) in finance and management. ANNs have showed high prediction performance in this area, but sometimes are confronted with inconsistent and unpredictable performance for noisy data. In addition, it may not be possible to train ANN or the training task cannot be effectively carried out without data reduction when the amount of data is so large because training the large data set needs much processing time and additional costs of collecting data. Instance selection is one of popular methods for dimensionality reduction and is directly related to data reduction. Although some researchers have addressed the need for instance selection in instance-based learning algorithms, there is little research on instance selection for ANN. This study proposes a genetic algorithm (GA) approach to instance selection in ANN for bankruptcy prediction. In this study, we use ANN supported by the GA to optimize the connection weights between layers and select relevant instances. It is expected that the globally evolved weights mitigate the well-known limitations of gradient descent algorithm of backpropagation algorithm. In addition, genetically selected instances will shorten the learning time and enhance prediction performance. This study will compare the proposed model with other major data mining techniques. Experimental results show that the GA approach is a promising method for instance selection in ANN.
Journal of the Korean Institute of Intelligent Systems
/
v.11
no.3
/
pp.223-230
/
2001
Since self-organizing map (SOM) preserves the topology of ordering in input spaces and trains itself by unsupervised algorithm, it is Llsed in many areas. However, SOM has a shortcoming: structure cannot be easily detcrmined without many trials-and-errors. Structure-adaptive self-orgnizing map (SASOM) which can adapt its structure as well as its weights overcome the shortcoming of self-organizing map: SASOM makes use of structure adaptation capability to place the nodes of prototype vectors into the pattern space accurately so as to make the decision boundmies as close to the class boundaries as possible. In this scheme, the initialization of weights of newly adapted nodes is important. This paper proposes a method which optimizes SASOM with genetic algorithm (GA) to determines the weight vector of newly split node. The leanling algorithm is a hybrid of unsupervised learning method and supervised learning method using LVQ algorithm. This proposed method not only shows higher performance than SASOM in terms of recognition rate and variation, but also preserves the topological order of input patterns well. Experiments with 2D pattern space data and handwritten digit database show that the proposed method is promising.
Korean Journal of Construction Engineering and Management
/
v.15
no.4
/
pp.68-76
/
2014
The accurate estimation of construction cost is important to a successful development in construction projects. In previous studies, the construction cost are estimated by statistical methods. Among the statistical methods, support vector regression (SVR) has attracted a lot of attentions because of the generalization ability in the field of cost estimation. However, despite the simplicity of the parameter to be adjusted, it is not easy to find optimal parameters. Therefore, to build an effective SVR model, SVR's parameters must be set properly without additional data handling loads. So this study proposes a novel approach, known as genetic algorithm (GA), which searches SVR's optimal parameters, then adopt the parameters to the SVR model for estimating cost in the early stage of apartment housing projects. The aim of this study is to propose a GA-SVR model and examine the feasibility in cost estimation by comparing with multiple regression analysis (MRA). The experimental results demonstrate the estimating performance based on the percentage of estimations within 25% and find it can effectively do the accurate estimation without through the trial and error process.
Korean Journal of Construction Engineering and Management
/
v.14
no.3
/
pp.42-52
/
2013
The aim of this study is to present a prediction model of construction cost for a bridge that has a high reliability using historical data from the planning phase based on a CBR (Case-Based Reasoning) method in order to overcome limitations of existing construction cost prediction methods, which is linearly estimated. To do this, a reasoning model of bridge construction cost by a spreadsheet template was suggested using complexly both CBR and GA (Genetic Algorithm). Besides, this study performed a case study to verify the suggested cost reasoning model for bridge construction projects. Measuring efficiency for a result of the case study was 8.69% on average. Since accuracy of the suggested prediction cost is relatively high compared to the other analysis methods for a prediction of construction cost, reliability of the suggested model was secured. In the case that information for detailed specifications of each bridge type in an initial design phase is difficult to be collected, the suggested model is able to predict the bridge construction cost within the minimized measuring efficiency with only the representative specifications for bridges as an improved correction method. Therefore, it is expected that the model will be used to estimate a reasonable construction cost for a bridge project.
The genetic algorithm (GA) and branch and bound (B&B) methods are the useful methods of searching the optimal project combination (combinatorial optimization) to maximize the project effect considering the budget constraint and the balance of regional development with regard to the Urban Regeneration New Deal policy, the core real estate policy of the Moon Jae-in government. The Ministry of Land, Infrastructure, and Transport (MOLIT) will choose 13 central-city-area-type projects, 2 economic-base-type projects, and 10 public-company-proposal-type projects among the numerous projects from 16 local governments while each government can apply only 4 projects, respectively, for the 2017 Urban Regeneration New Deal project. If MOLIT selects only those projects with a project effect maximization purpose, there will be unselected regions, which will harm the balance of regional development. For this reason, an optimization model is proposed herein, and a combinatorial optimization method using the GA and B&B methods should be sought to satisfy the various constraints with the object function. Going forward, it is expected that both these methods will present rational decision-making criteria if the central government allocates a special-purpose-limited budget to many local governments.
Hosny, Ossama A.;Elbarkouky, Mohamed M.G.;Elhakeem, Ahmed
Journal of Construction Engineering and Project Management
/
v.5
no.1
/
pp.11-19
/
2015
This paper presents optimized artificial neural networks (ANNs) claims prediction and decision awareness framework that guides owner organizations in their pre-bid construction project decisions to minimize claims. The framework is composed of two genetic optimization ANNs models: a Claims Impact Prediction Model (CIPM), and a Decision Awareness Model (DAM). The CIPM is composed of three separate ANNs that predict the cost and time impacts of the possible claims that may arise in a project. The models also predict the expected types of relationship between the owner and the contractor based on their behavioral and technical decisions during the bidding phase of the project. The framework is implemented using actual data from international projects in the Middle East and Egypt (projects owned by either public or private local organizations who hired international prime contractors to deliver the projects). Literature review, interviews with pertinent experts in the Middle East, and lessons learned from several international construction projects in Egypt determined the input decision variables of the CIPM. The ANNs training, which has been implemented in a spreadsheet environment, was optimized using genetic algorithm (GA). Different weights were assigned as variables to the different layers of each ANN and the total square error was used as the objective function to be minimized. Data was collected from thirty-two international construction projects in order to train and test the ANNs of the CIPM, which predicted cost overruns, schedule delays, and relationships between contracting parties. A genetic optimization backward analysis technique was then applied to develop the Decision Awareness Model (DAM). The DAM combined the three artificial neural networks of the CIPM to assist project owners in setting optimum values for their behavioral and technical decision variables. It implements an intelligent user-friendly input interface which helps project owners in visualizing the impact of their decisions on the project's total cost, original duration, and expected owner-contractor relationship. The framework presents a unique and transparent hybrid genetic algorithm-ANNs training and testing method. It has been implemented in a spreadsheet environment using MS Excel$^{(R)}$ and EVOLVERTM V.5.5. It provides projects' owners of a decision-support tool that raises their awareness regarding their pre-bid decisions for a construction project.
Journal of the Korean Society of Marine Environment & Safety
/
v.6
no.1
/
pp.23-33
/
2000
This paper is concerned with finding the global optimal solutions for the redundancy optimization problems in series-parallel systems related with system safety. This study transforms the difficult problem, which is classified as a nonlinear integer problem, into a 0/1 IP(Integer Programming) by using binary integer variables. And the global optimal solution to this problem can be easily obtained by applying GAMS (General Algebraic Modeling System) to the transformed 0/1 IP. From computational results, we notice that GA(Genetic Algorithm) to this problem, which is, to our knowledge, known as a best algorithm, is poor in many cases.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.3
no.3
/
pp.8-13
/
2010
Shape form focus (SFF) is a technique that reconstructs 3D shape of an object using image focus. Although many SFF methods have been proposed, there are still notable inaccuracy effects due to noise and non-optimization of image characteristics. In this paper, we propose a noise filter technique for noise reduction and genetic algorithm (GA) for focus measure optimization. The proposed method is analyzed with a statistical criteria such as Root Mean Square Error (RMSE) and correlation.
This paper presents a neuro-fuzzy modelling method that determines chemicals dosing model based on historical operation data for effective water quality control in water treatment system and calculates automatically the amount of optimum chemicals dosing against the changes of raw water qualities and flow rate. The structure identification in the modelling by means of neuro-fuzzy reasing is performed by Genetic Algorithm(GA) and Complex Method in which the numbers of hidden layer and its hidden nodes, learning rate and connection pattern between input layer and output layer are identified. The learning network is implemented utilizing Back Propagation(BP) algorithm. The effectiveness of the proposed modelling scheme and the feasibility of the acquired neuro-fuzzy network is evaluated through computer simulation for chemicals dosing control in water treatment system.
Journal of the Korea Institute of Building Construction
/
v.12
no.6
/
pp.664-673
/
2012
Determining the layout of temporary facilities that support construction activities at a site is an important planning activity, as layout can significantly affect cost, quality of work, safety, and other aspects of the project. The construction site layout problem involves difficult combinatorial optimization. Recently, various artificial intelligence(AI)-based algorithms have been applied to solving many complex optimization problems, including neural networks(NN), genetic algorithms(GA), and swarm intelligence(SI) which relates to the collective behavior of social systems such as honey bees and birds. This study proposes a site facility layout optimization algorithm based on self-organizing maps(SOM). Computational experiments are carried out to justify the efficiency of the proposed method and compare it with particle swarm optimization(PSO). The results show that the proposed algorithm can be efficiently employed to solve the problem of site layout.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.