• 제목/요약/키워드: Genetic Testing

검색결과 450건 처리시간 0.026초

Efficient Strategy to Identify Gene-Gene Interactions and Its Application to Type 2 Diabetes

  • Li, Donghe;Wo, Sungho
    • Genomics & Informatics
    • /
    • 제14권4호
    • /
    • pp.160-165
    • /
    • 2016
  • Over the past decade, the detection of gene-gene interactions has become more and more popular in the field of genome-wide association studies (GWASs). The goal of the GWAS is to identify genetic susceptibility to complex diseases by assaying and analyzing hundreds of thousands of single-nucleotide polymorphisms. However, such tests are computationally demanding and methodologically challenging. Recently, a simple but powerful method, named "BOolean Operation-based Screening and Testing" (BOOST), was proposed for genome-wide gene-gene interaction analyses. BOOST was designed with a Boolean representation of genotype data and is approximately equivalent to the log-linear model. It is extremely fast, and genome-wide gene-gene interaction analyses can be completed within a few hours. However, BOOST can not adjust for covariate effects, and its type-1 error control is not correct. Thus, we considered two-step approaches for gene-gene interaction analyses. First, we selected gene-gene interactions with BOOST and applied logistic regression with covariate adjustments to select gene-gene interactions. We applied the two-step approach to type 2 diabetes (T2D) in the Korea Association Resource (KARE) cohort and identified some promising pairs of single-nucleotide polymorphisms associated with T2D.

Evaluation of the Genetic Toxicity of Synthetic Chemicals (XIII) - Single Cell Gel Electrophoresis of Benzoyl Chloride, 2-Propyn-1-ol, and 2-Phenoxyethanol in Chinese Hamster lung Fibroblast -

  • Ryu, Jae-Chun;Kim, Youn-Jung
    • 한국환경성돌연변이발암원학회지
    • /
    • 제24권2호
    • /
    • pp.79-84
    • /
    • 2004
  • Three synthetic chemicals, benzoyl chloride, 2-propyn-l-ol, and 2-phenoxy ethanol were selected for genotoxicity testing, based on production quantity and available genotoxic data. In our previous report, benzoyl chloride induced chromosomal aberrations in Chinese hamster lung (CHL) fibroblast in vitro with and without metabolic activation, while 2-propyn-l-ol and 2-phenoxy ethanol induced only with metabolic activation. To compare the genotoxicity of chromosome aberration assay, the single cell gel electrophoresis (comet) assay subjected using CHL cells. As a result, statistically significant differences of tail moment values of benzoyl chloride, 2-propyn-1-ol, and 2-phenoxy ethanol were observed compared with control values on almost all concentrations with S9 or without S9 metabolic activation system. This results suggest that genotoxic results of the comet assay and the chromosome aberration assay show correlationship of genotoxicity in the CHL fibroblast. In summary, the positive result of chromosome aberration of benzoyl chloride, 2-propyn-l-ol, and 2-phenoxy ethanol was also induced DNA damages in comet assay with same cell line. Consequently, comet assay will be useful and more accurate tool to detect and to confirm the genotoxicity especially DNA damages in CHL fibroblast.

  • PDF

A Case of Platyspondylic Lethal Skeletal Dysplasia Torrance Type

  • Lee, Sung Chan;Choi, Min Seon
    • Neonatal Medicine
    • /
    • 제25권1호
    • /
    • pp.44-48
    • /
    • 2018
  • Platyspondylic lethal skeletal dysplasia, Torrance type (PLSD-T), is one of the pheno-types of type II collagenopathy and is characteristic of severe bone growth disorder. This phenotype may limit the growth and expansion of the lungs, which is known to cause death from respiratory failure during or shortly after birth, but in few less severe cases, patients have been reported to have survived to adulthood. We have experienced a case of PLSD-T in a preterm infant who was delivered via cesarean section at the gestational age of 29 weeks 3 days, with a birth weight of 1.15 kg. Physical examination of the infant revealed characteristic findings of short arms and legs, small thorax, distended abdomen, and cleft palate. On the basis of the subsequent genetic testing, the patient had a heterozygous mutation in the encoded c-propeptide region of collagen, type II, alpha 1 (COL2A1), c.4335G>A ($p.Trp1445^{\ast}$) in exon 52. This is the first case of PLSD-T diagnosed in Korea, and we hereby report the case.

A 10-year-old Boy with Microscopic Hematuria and Renal Biopsy Findings Mimicking Fabry Disease

  • Chung, Woo Yeong;Kang, Mi Seon
    • Childhood Kidney Diseases
    • /
    • 제20권2호
    • /
    • pp.79-82
    • /
    • 2016
  • Fabry disease is an X-linked lysosomal storage disorder caused by a deficiency of the enzyme ${\alpha}-galactosidase$ A, resulting in the accumulation of glycosphingolipids within the lysosomes of various cell types. It has a wide spectrum of clinical phenotypes, and renal failure is a serious complication. Fabry disease is confirmed either by measurement of ${\alpha}-galactosidase$ A activity or by genetic testing for GLA mutations. Renal biopsy findings on light microscopy, specifically enlarged podocytes with foamy cytoplasm, and osmiophilic inclusion bodies in the cytoplasm in all types of renal cells on electron microscopy, are characteristic of this disease. The predominant differential diagnosis is iatrogenic phospholipidosis in association with certain drugs that can cause cellular injuries indistinguishable from Fabry disease. Here, we report the case of a 10-year-old boy with microscopic hematuria who underwent a renal biopsy that showed morphological findings consistent with Fabry disease, although the patient had neither a GLA mutation nor a history of drug consumption. Six years later, spontaneous regression of this renal pathology was observed in a second renal biopsy examination.

Turn signal lamp jacket to prevent accident of bicycles

  • Saxena, Tarika
    • 한국인공지능학회지
    • /
    • 제4권1호
    • /
    • pp.4-7
    • /
    • 2016
  • These days, citizens have made change of food life to take Western style food and to suffer from diabetes because of excessive nutrition taking, less exercise, stress and other environmental factors. They may suffer from diabetes because of genetic defect, surgery of pancreas, disinfection and medicine and others. One of ten Koreans may have symptom of diabetes to be popular. The diabetes that is a kind of metabolic disease has high blood sugar at disorder of hyper insulinism and/or defect of insulin action. Long time high blood sugar may produce chronic disease of kidney, eyes, nerve, heart and blood vessel and others. The purpose of health care of diabetes patient was to reach target blood sugar by diet, physical exercise and medicine and to prevent and delay complication. Diabetes patient shall control blood sugar to keep healthy. The blood sugar control requires time and effort, and all of the patients are difficult to make effort and to spend time. You can control blood sugar by the application. The application allows patients to control blood sugar and to save time and efforts and to make small sized input and automation of remaining area. The service was limited to blood sugar graph, and user carries smart phone to conduct test and to have difficulty. Further study needs to solve the problems and to investigate blood sugar testing not carrying smart phone and to make application of easy control of blood sugar.

Different Real Time PCR Approaches for the Fine Quantification of SNP's Alleles in DNA Pools: Assays Development, Characterization and Pre-validation

  • Mattarucchi, Elia;Marsoni, Milena;Binelli, Giorgio;Passi, Alberto;Lo Curto, Francesco;Pasquali, Francesco;Porta, Giovanni
    • BMB Reports
    • /
    • 제38권5호
    • /
    • pp.555-562
    • /
    • 2005
  • Single nucleotide polymorphisms (SNPs) are becoming the most common type of markers used in genetic analysis. In the present report a SNP has been chosen to test the applicability of Real Time PCR to discriminate and quantify SNPs alleles on DNA pools. Amplification Refractory Mutation System (ARMS) and Mismatch Amplification Mutation Assay (MAMA) has been applied. Each assay has been pre-validated testing specificity and performances (linearity, PCR efficiency, interference limit, limit of detection, limit of quantification, precision and accuracy). Both the approaches achieve a precise and accurate estimation of the allele frequencies on pooled DNA samples in the range from 5% to 95% and don't require standard curves or calibrators. The lowest measurement that could be significantly distinguished from the background noise has been determined around the 1% for both the approaches, allowing to extend the range of quantifications from 1% to 99%. Furthermore applicability of Real Time PCR assays for general diagnostic purposes is discussed.

Application of digital polymerase chain reaction technology for noninvasive prenatal test

  • Lee, Seung Yong;Hwang, Seung Yong
    • Journal of Genetic Medicine
    • /
    • 제12권2호
    • /
    • pp.72-78
    • /
    • 2015
  • Recently, noninvasive prenatal test (NIPT) has been adopted as a primary screening tool for fetal chromosomal aneuploidy. The principle of NIPT lies in isolating the fetal fraction of cell-free DNA in maternal plasma and analyzing it with bioinformatic tools to measure the amount of gene from the target chromosome, such as chromosomes 21, 18, and 13. NIPT will contribute to decreasing the need for unnecessary invasive procedures, including amniocentesis and chorionic villi sampling, for confirming fetal aneuploidy because of its higher positive predictive value than that of the conventional prenatal screening method. However, its greater cost than that of the current antenatal screening protocol may be an obstacle to the adoption of this innovative technique in clinical practice. Digital polymerase chain reaction (dPCR) is a novel approach for detecting and quantifying nucleic acid. dPCR provides real-time diagnostic advantages with higher sensitivity, accuracy, and absolute quantification than conventional quantitative PCR. Since the groundbreaking discovery that fetal cell-free nucleic acid exists in maternal plasma was reported, dPCR has been used for the quantification of fetal DNA and for screening for fetal aneuploidy. It has been suggested that dPCR will decrease the cost by targeting specific sequences in the target chromosome, and dPCR-based noninvasive testing will facilitate progress toward the implementation of a noninvasive approach for screening for trisomy 21, 18, and 13. In this review, we highlight the principle of dPCR and discuss its future implications in clinical practice.

Lactobacillus plantarum AF1와 Lactobacillus plantarum HD1이 생성한 조항균 물질의 유전학적 독성평가 (A Genotoxicological Safety Evaluation of Crude Antifungal Compounds Produced by Lactobacillus Plantarum AF1 and Lactobacillus Plantarum HD1)

  • 장해춘;고상범;이재준
    • 한국지역사회생활과학회지
    • /
    • 제26권4호
    • /
    • pp.633-645
    • /
    • 2015
  • This study investigates the genotoxicity of crude antifungal compounds produced by Lactobacillus plantarum AF1 (L.plantarum AF1) and Lactobacillus plantarum HD1 (L. plantarum HD1) isolated from kimchi. The genetic toxicity of crude antifungal compounds was evaluated in bacterial reverse mutation in Salmonella and Escherichia spp., chromosome aberrations in Chinese hamster lung cells, and micronucleous formations in mice. In bacterial reversion assays with Salmonella Typhimurium TA98, TA100, TA1535, TA1537, and WP2uvrA, crude antifungal compounds did not increase the number of revertant colonies in both the absence and presence of the 59 metabolic activation system. In the chromosome aberration test with Chinese hamster lung cells, crude antifungal compounds showed no increase in the frequency of chromosome aberrations in the short-period test with/without the S9 mix or in the continuos test. In the in vivo mouse micronucleus assay, crude antifungal compounds showed no increase in the frequency of polychromatic erythrocytes with micronuclei. The results show that crude antifungal compounds produced by L. plantarum AF1 and L. plantarum HD1 did not induce any genotoxicity.

Presentation of Progressive Familial Intrahepatic Cholestasis Type 3 Mimicking Wilson Disease: Molecular Genetic Diagnosis and Response to Treatment

  • Boga, Salih;Jain, Dhanpat;Schilsky, Michael L.
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • 제18권3호
    • /
    • pp.202-208
    • /
    • 2015
  • Progressive familial intrahepatic cholestasis type 3 (PFIC3) is an autosomal recessive disorder of cholestasis of hepatocellular origin, typically seen in infancy or childhood caused by a defect in the ABCB4 located on chromosome 7. Here we report on an older patient, aged 15, who presented with biochemical testing that led to an initial consideration of a diagnosis of Wilson disease (WD) resulting in a delayed diagnosis of PFIC3. Diagnosis of PFIC3 was later confirmed by molecular studies that identified novel mutations in the ABCB4 gene. Cholestasis due to PFIC3 can cause elevated hepatic copper and increased urine copper excretion that overlap with current diagnostic criteria for WD. Molecular diagnostics are very useful for establishing the diagnosis of PFIC3. Ursodeoxycholic acid ameliorates cholestasis in PFIC3, and may help mediate a reduction in hepatic copper content in response to treatment.

Exploring the Utility of Partial Cytochrome c Oxidase Subunit 1 for DNA Barcoding of Gobies

  • Jeon, Hyung-Bae;Choi, Seung-Ho;Suk, Ho Young
    • Animal Systematics, Evolution and Diversity
    • /
    • 제28권4호
    • /
    • pp.269-278
    • /
    • 2012
  • Gobiids are hyperdiverse compared with other teleost groups, with about 2,000 species occurring in marine, freshwater, and blackish habitats, and they show a remarkable variety of morphologies and ecology. Testing the effectiveness of DNA barcodes on species that have emerged as a result of radiation remains a major challenge in evolutionary biology. Here, we used the cytochrome c oxidase subunit 1 (COI) sequences from 144 species of gobies and related species to evaluate the performance of distance-based DNA barcoding and to conduct a phylogenetic analysis. The average intra-genus genetic distance was considerably higher than that obtained in previous studies. Additionally, the interspecific divergence at higher taxonomic levels was not significantly different from that at the intragenus level, suggesting that congeneric gobies possess substantial interspecific sequence divergence in their COI gene. However, levels of intragenus divergence varied greatly among genera, and we do not provide sufficient evidence for using COI for cryptic species delimitation. Significantly more nucleotide changes were observed at the third codon position than that at the first and the second codons, revealing that extensive variation in COI reflects synonymous changes and little protein level variation. Despite clear signatures in several genera, the COI sequences did resolve genealogical relationships in the phylogenetic analysis well. Our results support the validity of COI barcoding for gobiid species identification, but the utilization of more gene regions will assist to offer a more robust gobiid species phylogeny.