• 제목/요약/키워드: Genetic Symbolic Regression

검색결과 14건 처리시간 0.027초

병렬 유전자 프로그래밍을 이용한 Symbolic Regression (Symbolic regression based on parallel Genetic Programming)

  • 김찬수;한근희
    • 디지털융복합연구
    • /
    • 제18권12호
    • /
    • pp.481-488
    • /
    • 2020
  • 기호적 회귀분석 (Symbolic Regression)은 회귀분석에서 주어진 데이터에 대하여 종속변수와 독립변수들 사이의 관계를 설명할 수 있는 함수를 직접 생성하는 분석방법으로서 Genetic Programming 이 본 분야의 연구에 가장 선도적으로 적용되고 있으며, 고정된 모델로부터 매개변수들의 최적화를 추구하는 다른 회귀분석 알고리즘들에 비하여 해석이 가능한 모델을 직접 도출할 수 있다는 장점을 갖는다. 본 연구에서는 Coarse grained 병렬 모델에 기반한 Parellel Genetic Programming 을 이용한 symbolic regression 알고리즘을 제시하고 제시된 알고리즘을 PMLB 데이타에 적용하여 해당 알고리즘의 효용성을 분석하고자 한다.

기호 코딩을 이용한 유전자 알고리즘 기반 퍼지 다항식 뉴럴네트워크의 설계 (Design of Genetic Algorithms-based Fuzzy Polynomial Neural Networks Using Symbolic Encoding)

  • 이인태;오성권;최정내
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.270-272
    • /
    • 2006
  • In this paper, we discuss optimal design of Fuzzy Polynomial Neural Networks by means of Genetic Algorithms(GAs) using symbolic coding for non-linear data. One of the major subject of genetic algorithms is representation of chromosomes. The proposed model optimized by the means genetic algorithms which used symbolic code to represent chromosomes. The proposed gFPNN used a triangle and a Gaussian-like membership function in premise part of rules and design the consequent structure by constant and regression polynomial (linear, quadratic and modified quadratic) function between input and output variables. The performance of the proposed model is quantified through experimentation that exploits standard data already used in fuzzy modeling. These results reveal superiority of the proposed networks over the existing fuzzy and neural models.

  • PDF

Design models for predicting shear resistance of studs in solid concrete slabs based on symbolic regression with genetic programming

  • Degtyarev, Vitaliy V.;Hicks, Stephen J.;Hajjar, Jerome F.
    • Steel and Composite Structures
    • /
    • 제43권3호
    • /
    • pp.293-309
    • /
    • 2022
  • Accurate design models for predicting the shear resistance of headed studs in solid concrete slabs are essential for obtaining economical and safe steel-concrete composite structures. In this study, symbolic regression with genetic programming (GPSR) was applied to experimental data to formulate new descriptive equations for predicting the shear resistance of studs in solid slabs using both normal and lightweight concrete. The obtained GPSR-based nominal resistance equations demonstrated good agreement with the test results. The equations indicate that the stud shear resistance is insensitive to the secant modulus of elasticity of concrete, which has been included in many international standards following the pioneering work of Ollgaard et al. In contrast, it increases when the stud height-to-diameter ratio increases, which is not reflected by the design models in the current international standards. The nominal resistance equations were subsequently refined for use in design from reliability analyses to ensure that the target reliability index required by the Eurocodes was achieved. Resistance factors for the developed equations were also determined following US design practice. The stud shear resistance predicted by the proposed models was compared with the predictions from 13 existing models. The accuracy of the developed models exceeds the accuracy of the existing equations. The proposed models produce predictions that can be used with confidence in design, while providing significantly higher stud resistances for certain combinations of variables than those computed with the existing equations given by many standards.

진화적 기호회귀 분석기법 기반의 호우 특보 예측 알고리즘 (A Prediction Algorithm for a Heavy Rain Newsflash using the Evolutionary Symbolic Regression Technique)

  • 현병용;이용희;서기성
    • 제어로봇시스템학회논문지
    • /
    • 제20권7호
    • /
    • pp.730-735
    • /
    • 2014
  • This paper introduces a GP (Genetic Programming) based robust technique for the prediction of a heavy rain newsflash. The nature of prediction for precipitation is very complex, irregular and highly fluctuating. Especially, the prediction of heavy precipitation is very difficult. Because not only it depends on various elements, such as location, season, time and geographical features, but also the case data is rare. In order to provide a robust model for precipitation prediction, a nonlinear and symbolic regression method using GP is suggested. The remaining part of the study is to evaluate the performance of prediction for a heavy rain newsflash using a GP based nonlinear regression technique in Korean regions. Analysis of the feature selection is executed and various fitness functions are proposed to improve performances. The KLAPS data of 2006-2010 is used for training and the data of 2011 is adopted for verification.

유전 프로그래밍 기반 단기 기온 예보의 보정 기법 (Genetic Programming Based Compensation Technique for Short-range Temperature Prediction)

  • 현병용;현수환;이용희;서기성
    • 전기학회논문지
    • /
    • 제61권11호
    • /
    • pp.1682-1688
    • /
    • 2012
  • This paper introduces a GP(Genetic Programming) based robust technique for temperature compensation in short-range prediction. Development of an efficient MOS(Model Output Statistics) is necessary to correct systematic errors of the model, because forecast models do not reliably determine weather conditions. Most of MOS use a linear regression to compensate a prediction model, therefore it is hard to manage an irregular nature of prediction. In order to solve the problem, a nonlinear and symbolic regression method using GP is suggested. The purpose of this study is to evaluate the accuracy of the estimation by a GP based nonlinear MOS for 3 days temperatures in Korean regions. This method is then compared to the UM model and has shown superior results. The training period of 2007-2009 summer is used, and the data of 2010 summer is adopted for verification.

직교좌표공간과 관절공간에서의 4족 보행로봇의 두 가지 진화적 걸음새 생성기법 (Two Evolutionary Gait Generation Methods for Quadruped Robots in Cartesian Coordinates Space and Join Coordinates Space)

  • 서기성
    • 전기학회논문지
    • /
    • 제63권3호
    • /
    • pp.389-394
    • /
    • 2014
  • Two evolutionary gait generation methods for Cartesian and Joint coordinates space are compared to develop a fast locomotion for quadruped robots. GA(Genetic Algorithm) based approaches seek to optimize a pre-selected set of parameters for the locus of paw and initial position in cartesian coordinates space. GP(Genetic Programming) based technique generate few joint trajectories using symbolic regression in joint coordinates space as a form of polynomials. Optimization for two proposed methods are executed using Webots simulation for the quadruped robot which is built by Bioloid. Furthermore, simulation results for two proposed methods are analysed in terms of different coordinate spaces.

AWS 지점별 기상데이타를 이용한 진화적 회귀분석 기반의 단기 풍속 예보 보정 기법 (Evolutionary Nonlinear Regression Based Compensation Technique for Short-range Prediction of Wind Speed using Automatic Weather Station)

  • 현병용;이용희;서기성
    • 전기학회논문지
    • /
    • 제64권1호
    • /
    • pp.107-112
    • /
    • 2015
  • This paper introduces an evolutionary nonlinear regression based compensation technique for the short-range prediction of wind speed using AWS(Automatic Weather Station) data. Development of an efficient MOS(Model Output Statistics) is necessary to correct systematic errors of the model, but a linear regression based MOS is hard to manage an irregular nature of weather prediction. In order to solve the problem, a nonlinear and symbolic regression method using GP(Genetic Programming) is suggested for a development of MOS wind forecast guidance. Also FCM(Fuzzy C-Means) clustering is adopted to mitigate bias of wind speed data. The purpose of this study is to evaluate the accuracy of the estimation by a GP based nonlinear MOS for 3 days prediction of wind speed in South Korean regions. This method is then compared to the UM model and has shown superior results. Data for 2007-2009, 2011 is used for training, and 2012 is used for testing.

Shear strength of RC beams. Precision, accuracy, safety and simplicity using genetic programming

  • Cladera, Antoni;Perez-Ordonez, Juan L.;Martinez-Abella, Fernando
    • Computers and Concrete
    • /
    • 제14권4호
    • /
    • pp.479-501
    • /
    • 2014
  • This paper presents the improvement of the EC-2 and EHE-08 shear strength formulations for concrete beams with shear reinforcement. The employed method is based on the genetic programming (GP) technique, which is configured to generate symbolic regression from a set of experimental data by considering the interactions among precision, accuracy, safety and simplicity. The size effect and the influence of the amount of shear reinforcement are examined. To develop and verify the models, 257 experimental tests on concrete beams from the literature are used. Three expressions of considerable simplicity, which significantly improve the shear strength prediction with respect to the formulations of the different studied codes, are proposed.

풍속 예측을 위한 선형회귀분석과 비선형회귀분석 기법의 비교 및 인자분석 (Comparison of Linear and Nonlinear Regressions and Elements Analysis for Wind Speed Prediction)

  • 김동연;서기성
    • 한국지능시스템학회논문지
    • /
    • 제25권5호
    • /
    • pp.477-482
    • /
    • 2015
  • 단기풍속 예측을 위한 진화적 선형 및 비선형 회귀분석 기반의 보정 기법을 비교한다. 모델의 체계적 오류를 교정하기 위한 효율적인 MOS(Model Output Statistics)의 개발이 필요하나, 기존의 선형회귀분석 기반의 보정기법은 다양한 기상요소의 복잡한 비선형 특성을 반영하기 힘들다. 이를 개선하기 위해서 유전 프로그래밍을 사용하여 풍속 예측에 대한 비선형 보정 수식을 생성하는 기법을 제안하고 기본 다중선형회귀분석법 및 Ridge, Lasso 회귀분석법과 비교한다. 더불어, 선형회귀분석법과 진화적 비선형회귀분석 기법의 인자 선택의 차이와 유사성을 비교하고 분석한다. 2007년~2013년의 KLAPS(Korea Local Analysis and Prediction System) 재분석자료를 사용하여 제주도와 부산지역의 격자점에 대한 실험을 수행한다.

유전적 프로그래밍 방법을 이용한 부유식 해양 구조물의 중량 추정 모델 (Simplified Model for the Weight Estimation of Floating Offshore Structure Using the Genetic Programming Method)

  • 엄태섭;노명일;신현경;하솔
    • 한국CDE학회논문집
    • /
    • 제19권1호
    • /
    • pp.1-11
    • /
    • 2014
  • In the initial design stage, the technology for estimating and managing the weight of a floating offshore structure, such as a FPSO (Floating, Production, Storage, and Off-loading unit) and an offshore wind turbine, has a close relationship with the basic performance and the price of the structure. In this study, using the genetic programming (GP), being used a lot in the approximate estimating model and etc., the weight estimation model of the floating offshore structure was studied. For this purpose, various data for estimating the weight of the floating offshore structure were collected through the literature survey, and then the genetic programming method for developing the weight estimation model was studied and implemented. Finally, to examine the applicability of the developed model, it was applied to examples of the weight estimation of a FPSO topsides and an offshore wind turbine. As a result, it was shown that the developed model can be applied the weight estimation process of the floating offshore structure at the early design stage.