In this paper we address a design problem for hub-and-spoke networks and then consider a capacitated hub locations problem with direct shipment (CHLPwD). We determine the location of hubs, the allocation of nodes to hubs, and direct shipment paths in the network, with the objective of minimizing the total cost in the network. In this paper, CHLPwD is formulated as 0-1 integer programming. We develop an evolutionary algorithm here to solve the large sized CHLPwD. To do this, we present the representation and the genetic operators suitable for the problem and propose a heuristic method for the allocation of nodes to hubs. To enhance the search capability, problem-specific information is used in our evolutionary algorithm. The proposed algorithm is compared with the heuristic method in terms of solution quality and computation time. The experimental results show that our algorithm can provide better solutions than the heuristic.
천해환경에서 저주파 광대역신호와 수직선배열을 이용하여, 퇴적층의 지음향인자(층두께, 종파속도, 종파감쇠계수, 밀도)를 역추정하였다. 역산방법은 모델 기반의 역산으로 유전알고리즘 (Genetic Algorithm)을 이용한 일관적 광대역 정합장처리(Coherent Broadband Matched Field Processing)기법을 사용하였다. 저주파 광대역음원으로 사용된 상업용 전구의 내폭신 호는 짧은 시간동안 많은 변화를 포함하는 천이신호이기 때문에, 분석시 시간과 주파수에 따른 창함수의 조절이 요구되는데, 주기신호분석에 주로 사용되는 퓨리에 기반의 분석방법은 이러한 점에서 많은 어려움이 있다. 본 논문에서는 해양도파관에서 근거리 음파전달 시 계측된 시계열신호로부터 다중경로성분을 구분하고 추출하기 위하여 시간-주파수영역에서 창함수의 크기조절이 가능한 웨이블릿 변환을 통한 신호 분석을 수행하였고, 분석된 실측음장과 계산된 복제음장의 연속웨이블릿 계수를 상호상관 시킴으로써 비용함수를 정의하였다. 비용함수의 전역최고점을 찾는 최적화 과정을 통하여 각 퇴적층의 지음향인자들을 역추정하였다. 특히 역산인자의 민감도에 따른 퇴적층별, 인자별, 분리연산을 수행함으로써 최적화과정에서 참값으로의 수렴효율을 높였다. 역산의 결과 실험해역 퇴적물 상층부에는 두께 44.43m, 음속 1549 m/s의 모래-실트-점토질(sand-silt-clay)층이 존재하고, 그 하부에는 12.28m 음속 1993 m/s의 거친모래질(Coarse sand)층의 존재를 추정해 내었다. 또한 역산 결과를 시추자료 및 탄성파 자료와 비교함으로써 본 논문에서 제안한 역산 방법의 유효성을 확인하였다.
Over the past decade, the detection of gene-gene interactions has become more and more popular in the field of genome-wide association studies (GWASs). The goal of the GWAS is to identify genetic susceptibility to complex diseases by assaying and analyzing hundreds of thousands of single-nucleotide polymorphisms. However, such tests are computationally demanding and methodologically challenging. Recently, a simple but powerful method, named "BOolean Operation-based Screening and Testing" (BOOST), was proposed for genome-wide gene-gene interaction analyses. BOOST was designed with a Boolean representation of genotype data and is approximately equivalent to the log-linear model. It is extremely fast, and genome-wide gene-gene interaction analyses can be completed within a few hours. However, BOOST can not adjust for covariate effects, and its type-1 error control is not correct. Thus, we considered two-step approaches for gene-gene interaction analyses. First, we selected gene-gene interactions with BOOST and applied logistic regression with covariate adjustments to select gene-gene interactions. We applied the two-step approach to type 2 diabetes (T2D) in the Korea Association Resource (KARE) cohort and identified some promising pairs of single-nucleotide polymorphisms associated with T2D.
진화연산은 최적화와 기계학습에 널리 사용되지만 또한 창조적이고 새로운 것을 만드는 데에도 사용될 수 있다. 본 논문에서는 지식을 표현하는 유연한 구조인 토픽맵에 주목하여, 새롭고 창의적인 토픽맵을 생성하는 토픽맵의 진화 시스템을 제안한다. 여기서는 만들어진 토픽맵이 유효한지에 대한 사람의 평가를 활용하는 대화형 진화 연산 방법(Interactive Evolutionary Computation)이 사용된다. 본 진화하는 토픽맵 시스템은 창의성을 도모하는 도구로서, 사용자들에게 새롭고 창의적인 지식을 떠올릴 수 있도록 도울 수 있을 것이다. 앞으로는 이 시스템에 보다 토픽맵에 정교한 사용자 인터페이스와 시각화 방법을 도입하고 기계학습을 활용하여 시스템의 진화 중에 나타나는 사용자의 피로를 크게 줄이는 방법을 연구할 것이다.
Dynamic deflection monitoring is an essential and critical part of structural health monitoring for high-speed railway bridges. Two critical problems need to be addressed when using inclinometer sensors for such applications. These include constructing a general representation model of inclination-deflection and addressing the ill-posed inverse problem to obtain the accurate dynamic deflection. This paper provides a dynamic deflection monitoring method with the placement of optimal inclinometer sensors for high-speed railway bridges. The deflection shapes are reconstructed using the inclination-deflection transformation model based on the differential relationship between the inclination and displacement mode shape matrix. The proposed optimal sensor configuration can be used to select inclination-deflection transformation models that meet the required accuracy and stability from all possible sensor locations. In this study, the condition number and information entropy are employed to measure the ill-condition of the selected mode shape matrix and evaluate the prediction performance of different sensor configurations. The particle swarm optimization algorithm, genetic algorithm, and artificial fish swarm algorithm are used to optimize the sensor position placement. Numerical simulation and experimental validation results of a 5-span high-speed railway bridge show that the reconstructed deflection shapes agree well with those of the real bridge.
본 연구에서는 집중형 센터를 가진 역물류네트워크(Reverse logistics network with centralized centers : RLNCC)를 효율적을 해결하기 위한 혼합형 유전알고리즘(Hybrid genetic algorithm : HGA) 접근법을 제안한다. 제안된 HGA에서는 유전알고리즘(Genetic algorithm : GA)이 주요한 알고리즘으로 사용되며, GA 실행을 위해 0 혹은 1의 값을 가질 수 있는 새로운 비트스트링 표현구조(Bit-string representation scheme), Gen and Chang(1997)이 제안한 확장샘플링공간에서의 우수해 선택전략(Elitist strategy in enlarged sampling space) 2점 교차변이 연산자(Two-point crossover operator), 랜덤 돌연변이 연산자(Random mutation operator)가 사용된다. 또한 HGA에서는 혼합형 개념 적용을 위해 Michalewicz(1994)가 제안한 반복적언덕오르기법(Iterative hill climbing method : IHCM)이 사용된다. IHCM은 지역적 탐색기법(Local search technique) 중의 하나로서 GA탐색과정에 의해 수렴된 탐색공간에 대해 정밀하게 탐색을 실시한다. RLNCC는 역물류 네트워크에서 수집센터(Collection center), 재제조센터(Remanufacturing center), 재분배센터(Redistribution center), 2차 시장(Secondary market)으로 구성되며, 이들 각 센터 및 2차 시장들 중에서 하나의 센터 및 2차 시장만 개설되는 형태를 가지고 있다. 이러한 형태의 RLNCC는 혼합정수계획법(Mixed integer programming : MIP)모델로 표현되며, MIP 모델은 수송비용, 고정비용, 제품처리비용의 총합을 최소화하는 목적함수를 가지고 있다. 수송비용은 각 센터와 2차 시장 간에 제품수송에서 발생하는 비용을 의미하며, 고정비용은 각 센터 및 2차 시장의 개설여부에 따라 결정된다. 예를 들어 만일 세 개의 수집센터(수집센터 1, 2, 3의 개설비용이 각각 10.5, 12.1, 8.9)가 고려되고, 이 중에서 수집센터 1이 개설되고, 나머지 수집센터 2, 3은 개설되지 않을 경우, 전체고정비용은 10.5가 된다. 제품처리비용은 고객으로부터 회수된 제품을 각 센터 및 2차 시장에서 처리할 경우에 발생되는 비용을 의미한다. 수치실험에서는 본 연구에서 제안된 HGA접근법과 Yun(2013)의 연구에서 제안한 GA접근법이 다양한 수행도 평가 척도에 의해 서로 비교, 분석된다. Yun(2013)이 제안한 GA는 HGA에서 사용되는 IHCM과 같은 지역적탐색기법을 가지지 않는 접근법이다. 이들 두 접근법에서 동일한 조건의 실험을 위해 총세대수 : 10,000, 집단의 크기 : 20, 교차변이 확률 : 0.5, 돌연변이 확률 : 0.1, IHCM을 위한 탐색범위 : 2.0이 사용되며, 탐색의 랜덤성을 제거하기 위해 총 20번의 반복실행이 이루어 졌다. 사례로 제시된 두 가지 형태의 RLNCC에 대해 GA와 HGA가 각각 실행되었으며, 그 실험결과는 본 연구에서 제안된 HGA가 기존의 접근법인 GA보다 더 우수하다는 것이 증명되었다. 다만 본 연구에서는 비교적 규모가 작은 RLNCC만을 고려하였기에 추후 연구에서는 보다 규모가 큰 RLNCC에 대해 비교분석이 이루어 져야 할 것이다.
동적이고 비정형적인 환경에서 작업을 수행하기 위해 인공유기체를 이용하는 응용 분야가 빠른 속도로 확대되고 있다. 이러한 분야에서 인공유기체의 행동 지식 표현법으로 일반적인 프로그래밍 또는 전통적인 인공지능 방법을 사용하면, 예측치 못한 상황으로 인한 빈번한 변경과 나쁜 응답성의 문제가 발생한다. 이들 문제들을 기계학습적으로 해결하기 위한 방법으로는 유전자 프로그래밍과 진화 신경망이 대표적이다. 그러나 아직까지도 인공유기체의 학습방법이 문제가 되고 있으며, 같은 환경 속에 서식하는 인공유기체의 종이 같아서 여러생명체를 대표할수 없는 문제점이 있다. 본 논문에서는 학습의 속도와 질을 향상시키기 위해 강화역전파 신경망과 분류규칙을 이용하였으며, 한 환경속에 서식하는 인공유기체의 종을 달리하였다. 제안된 모델을 평가하기 위해서 이종간 인공유기체 집단이 한 가상환경속에서 서로 경쟁하면서 생활하는 시뮬레이터를 설계 및 구현하였고, 그들의 행동진화를 수행결과로 보여주었으며, 타시스템과의 비교분석을 하였다. 결과적으로, 학습의 속도와 질적인 면에서 제안된 모델이 모두 우수한 것을 확인하였다. 본 모델의 특징으로는, 유전자 알고리즘에 의해서 염색체에 표현된 분류 규칙들과 신경망의 학습이 동시에 수행되며, 분류 규칙과 강화역전파 신경망의 2단계의 처리 과정으로 인하여 학습 능력이 강화된다는 점이다.
ERP, SCM 등과 같은 기업용 정보 시스템을 활용함에 있어, 고객의 문의에 따라 제품 판매 가능 유무와 가능일자를 계산하여 통보해 주는 지능형 ATP 시스템은 전산 정보를 활용하여 고객 만족도를 최대화할 수 있는 유용한 기능이라고 할 수 있다. 그렇지만 공급 사슬 환경에서 ATP 시스템을 적용하려고 할 경우, 고객이 문의해 온 Retailer에게 납품 가능한 모든 분배센터(Distribution Center)와 공장(Plant)의 미래 시점의 재고량 변화와 운송 능력 등을 모두 고려하여야 하므로 계산량이 방대한 NP-Complete 문제가 된다. 따라서 시스템 사용자가 빠른 시간 내에 해를 구하여 고객에게 결과를 알려 줄 수 있는 ATP 시스템의 개발은 공급 사슬 관리를 효과적으로 활용하기 위하여 반드시 필요한 일이라고 할 수 있다. 본 논문에서는 동적 생산 함수의 개념을 이용하여 비 정수 타임 랙을 고려하여 ATP 시스템을 모델링하고, 해당 수리 모형으로부터 효율적으로 해를 얻기 위하여 유전 알고리듬을 개발하였다. 비 정수 타임 랙을 활용한 ATP 시스템은 비 정수 타임 랙을 올림이나 내림을 통하여 정수화 시킨 후 모형 수립하는 기존의 방법보다 정교하게 현실을 반영할 수 있고, ATP 시스템을 위한 유전 알고리듬의 진화 시스템은 문제크기가 작은 것에서부터 큰 것까지 최적해에 매우 근사한 값을 매우 빠른 시간 내에 풀 수 있음을 알 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.