• 제목/요약/키워드: Genetic RNA Codon

검색결과 24건 처리시간 0.026초

블록순환 행렬에 의한 이중나선 DNA 구조 (I) (A Double Helix DNA Structure Based on the Block Circulant Matrix (I))

  • 이성국;박주용;이문호
    • 한국인터넷방송통신학회논문지
    • /
    • 제16권3호
    • /
    • pp.203-211
    • /
    • 2016
  • 유전자 코드는 바이오 정보 처리에 키 포인트로 인체의 유기적인 조직체이다. 현대 과학에서는 유전자 코드 분자구조의 신비스러운 특성을 체계적으로 설명하고 이해하는데 연구가 집중되고 있다. 본 논문에서는 유전자 시스템을 대칭적으로 해석하는데 중점을 두었고, Jacket 행렬로 무잡음 RNA 유전자 코드를 가장 단순하게 해석했다. 이유는 Jacket 행렬과 RNA는 그 역행렬이 Element (Block)-wise Inverse로 그 역(Inverse)도 자신이란 점과 대칭적 성질, 그리고 Kronecker곱을 갖기 때문이다. 제안된 방법이 유전자 RNA 코돈(Codon : 괘(卦))의 견지에서 Jacket 행렬의 분해를 통해 간단하고 명료함을 보인다.

유전정보 64 Trigram Codon의 표준 [UC;AG] 수직 블록 Code (A Standard [UC;AG] Vertical Block Code of Genetic Information 64 Trigram Codon)

  • 박주용;이성국;이문호
    • 한국인터넷방송통신학회논문지
    • /
    • 제16권6호
    • /
    • pp.135-140
    • /
    • 2016
  • 본 논문에서는 유전정보 DNA 표준 코드인 [UC;AG]를 64괘로 분석했다. 인간의 유전정보를 담고 있는 DNA는 인산과 당에 A(아데닌) C(시토신) G(구아닌) T(티민) 등 네 종류의 염기가 30억쌍 이어 붙여진 형태이다. DNA 표준 코드를 64괘로 나타내고, 이 코드를 Kronecker product를 이용하여 $16{\times}4$행렬로 나타냈다. 이 $16{\times}4$ 행렬은 이중나선의 중복성을 가지고 있으며, 이 중복성을 제거하면 RNA코드 $4{\times}4$ 행렬을 얻는다. $16{\times}4$행렬은 Kronecker product를 이용하여 소 행렬로 분해되었다. DNA 이중나선을 행렬로 표시하고 유전정보 괘 배열 코드를 분석하였으며 그 예를 예 5, 6에 나타냈다.

Identification of Isoleucine-Accepting tRNA in Maize Mitochondria

  • Park, Young-In;Lee, Byung-Chul;Chang, Hyo-Ihl;Moon, A-Ree
    • BMB Reports
    • /
    • 제28권6호
    • /
    • pp.494-498
    • /
    • 1995
  • Maize mitochondrial tRNAs for isoleucine have been isolated using a putative $tRNA^{Ile}$ gene probe which has been previously isolated and characterized. It contains the 5'-CAT anticodon which would normally recognize the AUG methionine codon. The nucleotide sequence of one of these tRNAs has been partially determined, and contains a modified nucleotide at the first position of the anticodon. This type of posttranscriptional modification event could change the specificity of amino acid acceptance of a tRNA, unlike that deduced from the corresponding gene. An aminoacylation experiment also demonstrated that these purified tRNAs have isoleucine acceptance activity but no methionine-accepting activity.

  • PDF

Genetic Variation in Exon 3 of Human Apo B mRNA Editing Protein (apobec-1) Gene

  • Hong, Seung-Ho;Song, Jung-Han;Kim, Jin-Q
    • Journal of Genetic Medicine
    • /
    • 제3권1호
    • /
    • pp.15-19
    • /
    • 1999
  • We have investigated the genetic variation in the human apo B mRNA editing protein (apobec-1) gene. Exon 3 of the apobec-1 gene was amplified by polymerase chain reaction. After detection of an additional band by single strand conformational polymorphism (SSCP) analysis, sequencing of the SSCP-shift sample revealed a single-base mutation. The mutation was a CGG transversion at codon 80 resulting in a lleRMet substitution. This substitution was confirmed by restriction fragment length polymorphism analysis since a Pvull site is abolished by the substitution. Population and family studies confirmed that the inheritance of the genotypes for apobec-1 gene polymorphism is controlled by two codominant alleles (P1 and P2). A significant difference in plasma triglyceride was detected among the different apobec-1 genotypes in the CAD patients (P<0.05). Our study could provide the basis for elucidating the interaction between genetic variation of the apobec-1 gene and disorders related to lipid metabolism.

  • PDF

Protein tRNA Mimicry in Translation Termination

  • Nakamura, Yoshikazu
    • 한국미생물생명공학회:학술대회논문집
    • /
    • 한국미생물생명공학회 2001년도 Proceedings of 2001 International Symposium
    • /
    • pp.83-89
    • /
    • 2001
  • Recent advances in the structural and molecular biology uncovered that a set of translation factors resembles a tRNA shape and, in one case, even mimics a tRNA function for deciphering the genetic :ode. Nature must have evolved this 'art' of molecular mimicry between protein and ribonucleic acid using different protein architectures to fulfill the requirement of a ribosome 'machine'. Termination of protein synthesis takes place on the ribosomes as a response to a stop, rather than a sense, codon in the 'decoding' site (A site). Translation termination requires two classes of polypeptide release factors (RFs): a class-I factor, codon-specific RFs (RFI and RF2 in prokaryotes; eRFI in eukaryotes), and a class-IT factor, non-specific RFs (RF3 in prokaryotes; eRF3 in eukaryotes) that bind guanine nucleotides and stimulate class-I RF activity. The underlying mechanism for translation termination represents a long-standing coding problem of considerable interest since it entails protein-RNA recognition instead of the well-understood codon-anticodon pairing during the mRNA-tRNA interaction. Molecular mimicry between protein and nucleic acid is a novel concept in biology, proposed in 1995 from three crystallographic discoveries, one, on protein-RNA mimicry, and the other two, on protein-DNA mimicry. Nyborg, Clark and colleagues have first described this concept when they solved the crystal structure of elongation factor EF- Tu:GTP:aminoacyl-tRNA ternary complex and found its overall structural similarity with another elongation factor EF-G including the resemblance of part of EF-G to the anticodon stem of tRNA (Nissen et al. 1995). Protein mimicry of DNA has been shown in the crystal structure of the uracil-DNA glycosylase-uracil glycosylase inhibitor protein complex (Mol et al. 1995; Savva and Pear 1995) as well as in the NMR structure of transcription factor TBP-TA $F_{II}$ 230 complex (Liu et al. 1998). Consistent with this discovery, functional mimicry of a major autoantigenic epitope of the human insulin receptor by RNA has been suggested (Doudna et al. 1995) but its nature of mimic is. still largely unknown. The milestone of functional mimicry between protein and nucleic acid has been achieved by the discovery of 'peptide anticodon' that deciphers stop codons in mRNA (Ito et al. 2000). It is surprising that it took 4 decades since the discovery of the genetic code to figure out the basic mechanisms behind the deciphering of its 64 codons.

  • PDF

Overexpression and Purification of Reverse Transcriptase of Retron EC83 by Changing the Downstream Sequence of the Initiation Codon

  • JEONG , DAE-WON;LIM, DONG-BIN
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권6호
    • /
    • pp.1280-1285
    • /
    • 2004
  • Retron is a prokaryotic genetic element, producing a short single-stranded DNA covalently linked to RNA (msDNA-RNA) by a reverse transcriptase (RT). In retron EC83, msDNA is further processed at between the 4th and the $5^{th}$ nucleotides, leaving a 79 nucleotide-long single-stranded DNA as a final product. To investigate this site-specific cleavage in msDNA synthesis, we purified the RT protein of retron EC83. Initially, RT ORF was cloned under the tac promoter, but the expression was very poor largely because of poor translation. In order to facilitate translation, the nucleotide sequence for the first nine amino acids was randomized with synonymous codons. This change of downstream sequence of translational initiation codon greatly affected the efficiency of translation. We could isolate clones which greatly increased RT production, and their sequences were compared to those of the low producers. The overproduced protein was purified and was shown to have RT activity.

Sequence Analysis of Mitochondrial Genome of Toxascaris leonina from a South China Tiger

  • Li, Kangxin;Yang, Fang;Abdullahi, A.Y.;Song, Meiran;Shi, Xianli;Wang, Minwei;Fu, Yeqi;Pan, Weida;Shan, Fang;Chen, Wu;Li, Guoqing
    • Parasites, Hosts and Diseases
    • /
    • 제54권6호
    • /
    • pp.803-807
    • /
    • 2016
  • Toxascaris leonina is a common parasitic nematode of wild mammals and has significant impacts on the protection of rare wild animals. To analyze population genetic characteristics of T. leonina from South China tiger, its mitochondrial (mt) genome was sequenced. Its complete circular mt genome was 14,277 bp in length, including 12 proteincoding genes, 22 tRNA genes, 2 rRNA genes, and 2 non-coding regions. The nucleotide composition was biased toward A and T. The most common start codon and stop codon were TTG and TAG, and 4 genes ended with an incomplete stop codon. There were 13 intergenic regions ranging 1 to 10 bp in size. Phylogenetically, T. leonina from a South China tiger was close to canine T. leonina. This study reports for the first time a complete mt genome sequence of T. leonina from the South China tiger, and provides a scientific basis for studying the genetic diversity of nematodes between different hosts.

Recombinant DNA and Protein Vaccines for Foot-and-mouth Disease Induce Humoral and Cellular Immune Responses in Mice

  • Bae, Ji-Young;Moon, Sun-Hwa;Choi, Jung-Ah;Park, Jong-Sug;Hahn, Bum-Soo;Kim, Ki-Yong;Kim, Byung-Han;Song, Jae-Young;Kwon, Dae-Hyuck;Lee, Suk-Chan;Kim, Jong-Bum;Yang, Joo-Sung
    • IMMUNE NETWORK
    • /
    • 제9권6호
    • /
    • pp.265-273
    • /
    • 2009
  • Foot-and-mouth disease virus (FMDV) is a small single-stranded RNA virus which belongs to the family Picornaviridae, genus Apthovirus. It is a principal cause of FMD which is highly contagious in livestock. In a wild type virus infection, infected animals usually elicit antibodies against structural and non-structural protein of FMDV. A structural protein, VP1, is involved in neutralization of virus particle, and has both B and T cell epitopes. A RNA-dependent RNA polymerase, 3D, is highly conserved among other serotypes and strongly immunogenic, therefore, we selected VP1 and 3D as vaccine targets. VP1 and 3D genes were codon-optimized to enhance protein expression level and cloned into mammalian expression vector. To produce recombinant protein, VP1 and 3D genes were also cloned into pET vector. The VP1 and 3D DNA or proteins were co-immunized into 5 weeks old BALB/C mice. Antigen-specific serum antibody (Ab) responses were detected by Ab ELISA. Cellular immune response against VP1 and 3D was confirmed by ELISpot assay. The results showed that all DNA- and protein-immunized groups induced cellular immune responses, suggesting that both DNA and recombinant protein vaccine administration efficiently induced Ag-specific humoral and cellular immune responses.

Complete Genomic Characterization of Two Beet Soil-Borne Virus Isolates from Turkey: Implications of Comparative Analysis of Genome Sequences

  • Moradi, Zohreh;Maghdoori, Hossein;Nazifi, Ehsan;Mehrvar, Mohsen
    • The Plant Pathology Journal
    • /
    • 제37권2호
    • /
    • pp.152-161
    • /
    • 2021
  • Sugar beet (Beta vulgaris L.) is known as a key product for agriculture in several countries across the world. Beet soil-borne virus (BSBV) triggers substantial economic damages to sugar beet by reducing the quantity of the yield and quality of the beet sugars. We conducted the present study to report the complete genome sequences of two BSBV isolates in Turkey for the first time. The genome organization was identical to those previously established BSBV isolates. The tripartite genome of BSBV-TR1 and -TR3 comprised a 5,835-nucleotide (nt) RNA1, a 3,454-nt RNA2, and a 3,005-nt RNA3 segment. According to sequence identity analyses, Turkish isolates were most closely related to the BSBV isolate reported from Iran (97.83-98.77% nt identity). The BSBV isolates worldwide (n = 9) were phylogenetically classified into five (RNA-coat protein read through gene [CPRT], TGB1, and TGB2 segments), four (RNA-rep), or three (TGB3) lineages. In genetic analysis, the TGB3 revealed more genetic variability (Pi = 0.034) compared with other regions. Population selection analysis revealed that most of the codons were generally under negative selection or neutral evolution in the BSBV isolates studied. However, positive selection was detected at codon 135 in the TGB1, which could be an adaptation in order to facilitate the movement and overcome the host plant resistance genes. We expect that the information on genome properties and genetic variability of BSBV, particularly in TGB3, TGB1, and CPRT genes, assist in developing effective control measures in order to prevent severe losses and make amendments in management strategies.

효율적인 비천연 아민노산 도입을 위한 효모균 타이로신-tRNA 합성효소와 대장균 시작 tRNA 변이체의 엠버써프레션 활성증가 (Improving amber suppression activity of an orthogonal pair of Saccharomyces cerevisiae tyrosyl-tRNA synthetase and a variant of E. coli initiator tRNA, fMam tRNACUA, for the efficient incorporation of unnatural amino acids)

  • 이욥테칼린;오주연;박중찬
    • 미생물학회지
    • /
    • 제54권4호
    • /
    • pp.420-427
    • /
    • 2018
  • 효모균 타이로실-tRNA 합성효소(Sc YRS)와 엠버 멈춤코돈을 인식하는 대장균 시작tRNA 변이체(fMam $tRNA_{CUA}$)쌍은 대장균에서 단백질 생합성시 원하는 특정 위치에 비천연아미노산을 도입하는데 활용된다. Sc YRS/fMam $tRNA_{CUA}$쌍의 엠버써프레션 활성을 높이기 위해 fMam $tRNA_{CUA}$의 첫번째 안티코돈 염기를 인식하는 Sc YRS의 320번, 321번 아미노산 잔기를 암호화하는 염기서열을 무작위로 돌연변이시킨 라이브러리를 제작하였다. 엠버써프레션에 의한 클로람페니콜 저항성을 이용해 라이브러리를 탐색하여 활성이 향상된 2개의 돌연변이주를 선별하였다. 이들의 클로람페니콜 저항성 성장의 $IC_{50}$값은 야생형 YRS보다 1.7~2.3배 높았으며, in vivo 엠버써프레션 활성을 비교한 결과 3~6.5배의 활성 증가가 나타났다. 높은 활성을 보인 mYRS-3 (P320A/D321A) 단백질의 fMam $tRNA_{CUA}$에 대한 in vitro aminoacylation kinetics 분석은 야생형보다 약 7배 높은 효소활성을 보였으며, 이는 주로 기질인 fMam $tRNA_{CUA}$에 대한 결합 친화도가 증가하여 나타났다. 이런 접근법을 이용하여 다양한 종류의 비천연 아미노산 도입에 활용되는 aminoacyl-tRNA 합성효소의 엠버써프레션 활성을 높임으로써 엠버 멈춤코돈을 이용한 비천연 아미노산 도입 효율성을 높일 수 있을 것이다.