• Title/Summary/Keyword: Genetic RNA Codon

Search Result 24, Processing Time 0.019 seconds

A Double Helix DNA Structure Based on the Block Circulant Matrix (I) (블록순환 행렬에 의한 이중나선 DNA 구조 (I))

  • Lee, Sung-Kook;Park, Ju-Yong;Lee, Moon-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.3
    • /
    • pp.203-211
    • /
    • 2016
  • The genetic code is a key to bio-informatics and to a science of biological self-organizing on the whole. Modern science faces the necessity of understanding and systematically explaining mysterious features of ensembles of molecular structures of the genetic code. This paper is devoted to symmetrical analysis for genetic systems. Mathematical theories of noise-immunity coding and discrete signal processing are based on Jacket matrix methods of representation and analysis of information. Both of the RNA and Jacket Matrix property also have the Element(Block) - wise Inverse Matrices. These matrix methods, which are connected closely with relations of symmetry, are borrowed for a matrix analysis of ensembles of molecular elements of the genetic code. This method is presented for its simplicity and the clarity with which it decomposes a Jacket Matrix in terms of the genetic RNA Codon.

A Standard [UC;AG] Vertical Block Code of Genetic Information 64 Trigram Codon (유전정보 64 Trigram Codon의 표준 [UC;AG] 수직 블록 Code)

  • Park, Ju-Yong;Lee, Sung-Kook;Lee, Moon-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.6
    • /
    • pp.135-140
    • /
    • 2016
  • In this paper, we analyze the [UC;AG] code which is genetic information standard DNA code, with 64 trigram. DNA which contains human genetic information, is a shape of adding three billion pairs of four bases which are A(adenine), C(cytosine), G(guanine) and T(thymine) to phosphoric acid and glucose. We present standard DNA code to 64 trigram which is $64{\times}4$ matrix with Kronecker product. This $64{\times}4$ matrix has double helix duplex property, and we can get the $4{\times}4$ matrix RNA code by removing the duplex of it. We present the DNA double helix to matrices and analysis the trigram array code of genetic information and the examples of it are presented in example 5, 6.

Identification of Isoleucine-Accepting tRNA in Maize Mitochondria

  • Park, Young-In;Lee, Byung-Chul;Chang, Hyo-Ihl;Moon, A-Ree
    • BMB Reports
    • /
    • v.28 no.6
    • /
    • pp.494-498
    • /
    • 1995
  • Maize mitochondrial tRNAs for isoleucine have been isolated using a putative $tRNA^{Ile}$ gene probe which has been previously isolated and characterized. It contains the 5'-CAT anticodon which would normally recognize the AUG methionine codon. The nucleotide sequence of one of these tRNAs has been partially determined, and contains a modified nucleotide at the first position of the anticodon. This type of posttranscriptional modification event could change the specificity of amino acid acceptance of a tRNA, unlike that deduced from the corresponding gene. An aminoacylation experiment also demonstrated that these purified tRNAs have isoleucine acceptance activity but no methionine-accepting activity.

  • PDF

Genetic Variation in Exon 3 of Human Apo B mRNA Editing Protein (apobec-1) Gene

  • Hong, Seung-Ho;Song, Jung-Han;Kim, Jin-Q
    • Journal of Genetic Medicine
    • /
    • v.3 no.1
    • /
    • pp.15-19
    • /
    • 1999
  • We have investigated the genetic variation in the human apo B mRNA editing protein (apobec-1) gene. Exon 3 of the apobec-1 gene was amplified by polymerase chain reaction. After detection of an additional band by single strand conformational polymorphism (SSCP) analysis, sequencing of the SSCP-shift sample revealed a single-base mutation. The mutation was a CGG transversion at codon 80 resulting in a lleRMet substitution. This substitution was confirmed by restriction fragment length polymorphism analysis since a Pvull site is abolished by the substitution. Population and family studies confirmed that the inheritance of the genotypes for apobec-1 gene polymorphism is controlled by two codominant alleles (P1 and P2). A significant difference in plasma triglyceride was detected among the different apobec-1 genotypes in the CAD patients (P<0.05). Our study could provide the basis for elucidating the interaction between genetic variation of the apobec-1 gene and disorders related to lipid metabolism.

  • PDF

Protein tRNA Mimicry in Translation Termination

  • Nakamura, Yoshikazu
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2001.06a
    • /
    • pp.83-89
    • /
    • 2001
  • Recent advances in the structural and molecular biology uncovered that a set of translation factors resembles a tRNA shape and, in one case, even mimics a tRNA function for deciphering the genetic :ode. Nature must have evolved this 'art' of molecular mimicry between protein and ribonucleic acid using different protein architectures to fulfill the requirement of a ribosome 'machine'. Termination of protein synthesis takes place on the ribosomes as a response to a stop, rather than a sense, codon in the 'decoding' site (A site). Translation termination requires two classes of polypeptide release factors (RFs): a class-I factor, codon-specific RFs (RFI and RF2 in prokaryotes; eRFI in eukaryotes), and a class-IT factor, non-specific RFs (RF3 in prokaryotes; eRF3 in eukaryotes) that bind guanine nucleotides and stimulate class-I RF activity. The underlying mechanism for translation termination represents a long-standing coding problem of considerable interest since it entails protein-RNA recognition instead of the well-understood codon-anticodon pairing during the mRNA-tRNA interaction. Molecular mimicry between protein and nucleic acid is a novel concept in biology, proposed in 1995 from three crystallographic discoveries, one, on protein-RNA mimicry, and the other two, on protein-DNA mimicry. Nyborg, Clark and colleagues have first described this concept when they solved the crystal structure of elongation factor EF- Tu:GTP:aminoacyl-tRNA ternary complex and found its overall structural similarity with another elongation factor EF-G including the resemblance of part of EF-G to the anticodon stem of tRNA (Nissen et al. 1995). Protein mimicry of DNA has been shown in the crystal structure of the uracil-DNA glycosylase-uracil glycosylase inhibitor protein complex (Mol et al. 1995; Savva and Pear 1995) as well as in the NMR structure of transcription factor TBP-TA $F_{II}$ 230 complex (Liu et al. 1998). Consistent with this discovery, functional mimicry of a major autoantigenic epitope of the human insulin receptor by RNA has been suggested (Doudna et al. 1995) but its nature of mimic is. still largely unknown. The milestone of functional mimicry between protein and nucleic acid has been achieved by the discovery of 'peptide anticodon' that deciphers stop codons in mRNA (Ito et al. 2000). It is surprising that it took 4 decades since the discovery of the genetic code to figure out the basic mechanisms behind the deciphering of its 64 codons.

  • PDF

Overexpression and Purification of Reverse Transcriptase of Retron EC83 by Changing the Downstream Sequence of the Initiation Codon

  • JEONG , DAE-WON;LIM, DONG-BIN
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.1280-1285
    • /
    • 2004
  • Retron is a prokaryotic genetic element, producing a short single-stranded DNA covalently linked to RNA (msDNA-RNA) by a reverse transcriptase (RT). In retron EC83, msDNA is further processed at between the 4th and the $5^{th}$ nucleotides, leaving a 79 nucleotide-long single-stranded DNA as a final product. To investigate this site-specific cleavage in msDNA synthesis, we purified the RT protein of retron EC83. Initially, RT ORF was cloned under the tac promoter, but the expression was very poor largely because of poor translation. In order to facilitate translation, the nucleotide sequence for the first nine amino acids was randomized with synonymous codons. This change of downstream sequence of translational initiation codon greatly affected the efficiency of translation. We could isolate clones which greatly increased RT production, and their sequences were compared to those of the low producers. The overproduced protein was purified and was shown to have RT activity.

Sequence Analysis of Mitochondrial Genome of Toxascaris leonina from a South China Tiger

  • Li, Kangxin;Yang, Fang;Abdullahi, A.Y.;Song, Meiran;Shi, Xianli;Wang, Minwei;Fu, Yeqi;Pan, Weida;Shan, Fang;Chen, Wu;Li, Guoqing
    • Parasites, Hosts and Diseases
    • /
    • v.54 no.6
    • /
    • pp.803-807
    • /
    • 2016
  • Toxascaris leonina is a common parasitic nematode of wild mammals and has significant impacts on the protection of rare wild animals. To analyze population genetic characteristics of T. leonina from South China tiger, its mitochondrial (mt) genome was sequenced. Its complete circular mt genome was 14,277 bp in length, including 12 proteincoding genes, 22 tRNA genes, 2 rRNA genes, and 2 non-coding regions. The nucleotide composition was biased toward A and T. The most common start codon and stop codon were TTG and TAG, and 4 genes ended with an incomplete stop codon. There were 13 intergenic regions ranging 1 to 10 bp in size. Phylogenetically, T. leonina from a South China tiger was close to canine T. leonina. This study reports for the first time a complete mt genome sequence of T. leonina from the South China tiger, and provides a scientific basis for studying the genetic diversity of nematodes between different hosts.

Recombinant DNA and Protein Vaccines for Foot-and-mouth Disease Induce Humoral and Cellular Immune Responses in Mice

  • Bae, Ji-Young;Moon, Sun-Hwa;Choi, Jung-Ah;Park, Jong-Sug;Hahn, Bum-Soo;Kim, Ki-Yong;Kim, Byung-Han;Song, Jae-Young;Kwon, Dae-Hyuck;Lee, Suk-Chan;Kim, Jong-Bum;Yang, Joo-Sung
    • IMMUNE NETWORK
    • /
    • v.9 no.6
    • /
    • pp.265-273
    • /
    • 2009
  • Foot-and-mouth disease virus (FMDV) is a small single-stranded RNA virus which belongs to the family Picornaviridae, genus Apthovirus. It is a principal cause of FMD which is highly contagious in livestock. In a wild type virus infection, infected animals usually elicit antibodies against structural and non-structural protein of FMDV. A structural protein, VP1, is involved in neutralization of virus particle, and has both B and T cell epitopes. A RNA-dependent RNA polymerase, 3D, is highly conserved among other serotypes and strongly immunogenic, therefore, we selected VP1 and 3D as vaccine targets. VP1 and 3D genes were codon-optimized to enhance protein expression level and cloned into mammalian expression vector. To produce recombinant protein, VP1 and 3D genes were also cloned into pET vector. The VP1 and 3D DNA or proteins were co-immunized into 5 weeks old BALB/C mice. Antigen-specific serum antibody (Ab) responses were detected by Ab ELISA. Cellular immune response against VP1 and 3D was confirmed by ELISpot assay. The results showed that all DNA- and protein-immunized groups induced cellular immune responses, suggesting that both DNA and recombinant protein vaccine administration efficiently induced Ag-specific humoral and cellular immune responses.

Complete Genomic Characterization of Two Beet Soil-Borne Virus Isolates from Turkey: Implications of Comparative Analysis of Genome Sequences

  • Moradi, Zohreh;Maghdoori, Hossein;Nazifi, Ehsan;Mehrvar, Mohsen
    • The Plant Pathology Journal
    • /
    • v.37 no.2
    • /
    • pp.152-161
    • /
    • 2021
  • Sugar beet (Beta vulgaris L.) is known as a key product for agriculture in several countries across the world. Beet soil-borne virus (BSBV) triggers substantial economic damages to sugar beet by reducing the quantity of the yield and quality of the beet sugars. We conducted the present study to report the complete genome sequences of two BSBV isolates in Turkey for the first time. The genome organization was identical to those previously established BSBV isolates. The tripartite genome of BSBV-TR1 and -TR3 comprised a 5,835-nucleotide (nt) RNA1, a 3,454-nt RNA2, and a 3,005-nt RNA3 segment. According to sequence identity analyses, Turkish isolates were most closely related to the BSBV isolate reported from Iran (97.83-98.77% nt identity). The BSBV isolates worldwide (n = 9) were phylogenetically classified into five (RNA-coat protein read through gene [CPRT], TGB1, and TGB2 segments), four (RNA-rep), or three (TGB3) lineages. In genetic analysis, the TGB3 revealed more genetic variability (Pi = 0.034) compared with other regions. Population selection analysis revealed that most of the codons were generally under negative selection or neutral evolution in the BSBV isolates studied. However, positive selection was detected at codon 135 in the TGB1, which could be an adaptation in order to facilitate the movement and overcome the host plant resistance genes. We expect that the information on genome properties and genetic variability of BSBV, particularly in TGB3, TGB1, and CPRT genes, assist in developing effective control measures in order to prevent severe losses and make amendments in management strategies.

Improving amber suppression activity of an orthogonal pair of Saccharomyces cerevisiae tyrosyl-tRNA synthetase and a variant of E. coli initiator tRNA, fMam tRNACUA, for the efficient incorporation of unnatural amino acids (효율적인 비천연 아민노산 도입을 위한 효모균 타이로신-tRNA 합성효소와 대장균 시작 tRNA 변이체의 엠버써프레션 활성증가)

  • Tekalign, Eyob;Oh, Ju-Eon;Park, Jungchan
    • Korean Journal of Microbiology
    • /
    • v.54 no.4
    • /
    • pp.420-427
    • /
    • 2018
  • The orthogonal pair of Saccharomyces cerevisiae tyrosyl-tRNA synthetase (Sc YRS) and a variant of E. coli initiator tRNA, fMam $tRNA_{CUA}$ which recognizes the amber stop codon is an effective tool for site-specific incorporation of unnatural amino acids into the protein in E. coli. To evolve the amber suppression activity of the orthogonal pair, we generated a mutant library of Sc YRS by randomizing two amino acids at 320 and 321 which involve recognition of the first base of anticodon in fMam $tRNA_{CUA}$. Two positive clones are selected from the library screening with chloramphenicol resistance mediated by amber suppression. They showed growth resistance against high concentration of chloramphenicol and their $IC_{50}$ values were approximately 1.7~2.3 fold higher than the wild type YRS. In vivo amber suppression assay reveals that mutant YRS-3 (mYRS-3) clone containing amino acid substitutions of P320A and D321A showed 6.5-fold higher activity of amber suppression compared with the wild type. In addition, in vitro aminoacylation kinetics of mYRS-3 also showed approximately 7-fold higher activity than the wild type, and the enhancement was mainly due to the increase of tRNA binding affinity. These results demonstrate that optimization of anticodon recognition by engineered aminoacyl tRNA synthetase improves the efficiency of unnatural amino acid incorporation in response to nonsense codon.