• Title/Summary/Keyword: Genetic Approach

Search Result 1,323, Processing Time 0.024 seconds

Reinforcing Reverse Logistics Activities in Closed-loop Supply Chain Model: Hybrid Genetic Algorithm Approach (폐쇄루프공급망모델에서 역물류 활동 강화: 혼합유전알고리즘 접근법)

  • Yun, YoungSu
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.26 no.1
    • /
    • pp.55-65
    • /
    • 2021
  • In this paper, a methodology for reinforcing reverse logistics (RL) activities in a closed-loop supply chain (CLSC) model is proposed. For the methodology, the activities of the recovery center (RC) which can be considered as one of the facilities in the RL are reinforced. By the reinforced activities in the RC, the recovered parts and products after checking and recovering processes of the returned product from customer can be reused in the forward logistics (FL) of the CLSC model. A mathematical formulation is suggested for representing the CLSC model with reinforced RL activities, and implemented using a hybrid genetic algorithm (HGA) approach. In numerical experiment, two different scales of the CLSC model are presented and the performance of the HGA approach is compared with those of some conventional approaches. The experimental results show that the former outperforms the latter in most of performance measures. The robustness of the CLSC model is also proved by regulating various rates of the recovered parts and products in the RC.

Hybrid Approach for Solving Manufacturing Optimization Problems (제조최적화문제 해결을 위한 혼합형 접근법)

  • Yun, YoungSu
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.20 no.6
    • /
    • pp.57-65
    • /
    • 2015
  • Manufacturing optimization problem is to find the optimal solution under satisfying various and complicated constraints with the design variables of nonlinear types. To achieve the objective, this paper proposes a hybrid approach. The proposed hybrid approach is consist of genetic algorithm(GA), cuckoo search(CS) and hill climbing method(HCM). First, the GA is used for global search. Secondly, the CS is adapted to overcome the weakness of GA search. Lastly, the HCM is applied to search precisely the convergence space after the GA and CS search. In experimental comparison, various types of manufacturing optimization problems are used for comparing the efficiency between the proposed hybrid approach and other conventional competing approaches using various measures of performance. The experimental result shows that the proposed hybrid approach outperforms the other conventional competing approaches.

A Genetic Algorithm for the Traveling Salesman Problem Using Prufer Number (Prufer 수를 이용한 외판원문제의 유전해법)

  • 이재승;신해웅;강맹규
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.20 no.41
    • /
    • pp.1-14
    • /
    • 1997
  • This study proposes a genetic algorithm using Pr(equation omitted)fer number for the traveling salesman problem(PNGATSP). Nearest neighbor nodes are mixed with randomly selected nodes at the stage of generating initial solutions. Proposed PNGATSP adopts a few ideas which are different from traditional genetic algorithms. For instance, an exponential fitness function and elitism are used and Pr(equation omitted)fer number is used for encoding TSP. Genetic operators are selected by experiments, which make a good solution among four combinations of conventional genetic operators and new genetic operators. For respective combinations, robust set of parameters is determined by the experimental designing approach. The feature of Pr(equation omitted)fer number code for TSP and the search power of GA using Pr(equation omitted)fer number is analysed. The best is a combination of OX(order crossover) and swap, which is superior to the other experimented combinations of genetic operators by 1.0%∼12.8% deviation.

  • PDF

A Hybrid Genetic Algorithm for Job Shop Scheduling (Job Shop 일정계획을 위한 혼합 유전 알고리즘)

  • 박병주;김현수
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.26 no.2
    • /
    • pp.59-68
    • /
    • 2001
  • The job shop scheduling problem is not only NP-hard, but is one of the well known hardest combinatorial optimization problems. The goal of this research is to develop an efficient scheduling method based on hybrid genetic algorithm to address job shop scheduling problem. In this scheduling method, generating method of initial population, new genetic operator, selection method are developed. The scheduling method based on genetic algorithm are tested on standard benchmark job shop scheduling problem. The results were compared with another genetic algorithm0-based scheduling method. Compared to traditional genetic, algorithm, the proposed approach yields significant improvement at a solution.

  • PDF

Derivative Evaluation and Conditional Random Selection for Accelerating Genetic Algorithms

  • Jung, Sung-Hoon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.1
    • /
    • pp.21-28
    • /
    • 2005
  • This paper proposes a new method for accelerating the search speed of genetic algorithms by taking derivative evaluation and conditional random selection into account in their evolution process. Derivative evaluation makes genetic algorithms focus on the individuals whose fitness is rapidly increased. This accelerates the search speed of genetic algorithms by enhancing exploitation like steepest descent methods but also increases the possibility of a premature convergence that means most individuals after a few generations approach to local optima. On the other hand, derivative evaluation under a premature convergence helps genetic algorithms escape the local optima by enhancing exploration. If GAs fall into a premature convergence, random selection is used in order to help escaping local optimum, but its effects are not large. We experimented our method with one combinatorial problem and five complex function optimization problems. Experimental results showed that our method was superior to the simple genetic algorithm especially when the search space is large.

An Application of a Hybrid Genetic Algorithm on Missile Interceptor Allocation Problem (요격미사일 배치문제에 대한 하이브리드 유전알고리듬 적용방법 연구)

  • Han, Hyun-Jin
    • Journal of the military operations research society of Korea
    • /
    • v.35 no.3
    • /
    • pp.47-59
    • /
    • 2009
  • A hybrid Genetic Algorithm is applied to military resource allocation problem. Since military uses many resources in order to maximize its ability, optimization technique has been widely used for analysing resource allocation problem. However, most of the military resource allocation problems are too complicate to solve through the traditional operations research solution tools. Recent innovation in computer technology from the academy makes it possible to apply heuristic approach such as Genetic Algorithm(GA), Simulated Annealing(SA) and Tabu Search(TS) to combinatorial problems which were not addressed by previous operations research tools. In this study, a hybrid Genetic Algorithm which reinforces GA by applying local search algorithm is introduced in order to address military optimization problem. The computational result of hybrid Genetic Algorithm on Missile Interceptor Allocation problem demonstrates its efficiency by comparing its result with that of a simple Genetic Algorithm.

SA-selection-based Genetic Algorithm for the Design of Fuzzy Controller

  • Han Chang-Wook;Park Jung-Il
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.2
    • /
    • pp.236-243
    • /
    • 2005
  • This paper presents a new stochastic approach for solving combinatorial optimization problems by using a new selection method, i.e. SA-selection, in genetic algorithm (GA). This approach combines GA with simulated annealing (SA) to improve the performance of GA. GA and SA have complementary strengths and weaknesses. While GA explores the search space by means of population of search points, it suffers from poor convergence properties. SA, by contrast, has good convergence properties, but it cannot explore the search space by means of population. However, SA does employ a completely local selection strategy where the current candidate and the new modification are evaluated and compared. To verify the effectiveness of the proposed method, the optimization of a fuzzy controller for balancing an inverted pendulum on a cart is considered.

Economic Design of Local Area Networks using Genetic Algorithms (유전자 알고리즘을 이용한 경제적 LAN 설계)

  • Yum Chang-Sun;Lee Han-Jin
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.28 no.2
    • /
    • pp.101-108
    • /
    • 2005
  • In this paper, the design problem of local area networks is defined as finding the network topology minimizing cost subject to reliability constraint. The design problem includes issues such as multiple choices of link type for each possible link, multiple choices of hub type for each hub, and allocation of the users to the hubs. To efficiently solve the problem, a genetic approach is suggested. According to the experiments, the proposed approach improves search performance.

Evolutionary Network Optimization: Hybrid Genetic Algorithms Approach

  • Gen, Mitsuo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.195-204
    • /
    • 2003
  • Network optimization is being increasingly important and fundamental issue in the fields such as engineering, computer science, operations research, transportation, telecommunication, decision support systems, manufacturing, and airline scheduling. Networks provide a useful way to modeling real world problems and are extensively used in practice. Many real world applications impose on more complex issues, such as, complex structure, complex constraints, and multiple objects to be handled simultaneously and make the problem intractable to the traditional approaches. Recent advances in evolutionary computation have made it possible to solve such practical network optimization problems. The invited talk introduces a thorough treatment of evolutionary approaches, i.e., hybrid genetic algorithms approach to network optimization problems, such as, fixed charge transportation problem, minimum cost and maximum flow problem, minimum spanning tree problem, multiple project scheduling problems, scheduling problem in FMS.

  • PDF

Integrated Production-Distribution Planning for Single-Period Inventory Products Using a Hybrid Genetic Algorithm (혼성 유전알고리듬을 이용한 단일기간 재고품목의 통합 생산-분배계획 해법)

  • Park, Yang-Byung
    • IE interfaces
    • /
    • v.16 no.3
    • /
    • pp.280-290
    • /
    • 2003
  • Many firms are trying to optimize their production and distribution functions separately, but possible savings by this approach may be limited. Nowadays, it is more important to analyze these two functions simultaneously by trading off the costs associated with the whole. In this paper, I treat a production and distribution planning problem for single-period inventory products comprised of a single production facility and multiple customers, with the aim of optimally coordinating important and interrelated decisions of production sequencing and vehicle routing. Then, I propose a hybrid genetic algorithm incorporating several local optimization techniques, HGAP, for integrated production-distribution planning. Computational results on test problems show that HGAP is effective and generates substantial cost savings over Hurter and Buer's decoupled planning approach in which vehicle routing is first developed and a production sequence is consequently derived. Especially, HGAP performs better on the problems where customers are dispersed with multi-item demand than on the problems where customers are divided into several zones based on single-item demand.