• Title/Summary/Keyword: Genetic Approach

Search Result 1,327, Processing Time 0.032 seconds

Medical Implementation of Microarray Technology (마이크로어레이 분석기법의 임상적용에 관한 연구)

  • Kang, Ji Un
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.52 no.4
    • /
    • pp.310-316
    • /
    • 2020
  • Microarray technology represents a critical new advance in molecular cytogenetics. The development of this approach has provided fundamental insights into the molecular pathogenesis in clinical cytogenetics and has provided a clue to many unidentified or unexplained diseases. The approach allows a comprehensive investigation of thousands and millions of genomic loci simultaneously and enables the efficient detection of copy number alterations. The application of this technology has shown tremendous fluidity and complexity of the human genome, and has provided accurate diagnosis and appropriate clinical management in a timely and efficient manner for identifying genomic alterations. The clinical impact of the genomic alterations identified by microarrays is evolving into a diagnostic tool to identify high-risk patients better and predict patient outcomes from their genomic profiles. The transformation of conventional cytogenetics into an automated discipline will improve diagnostic yield significantly, leading to accurate diagnosis and genetic counseling. This article reviews cytogenetic technologies used to identify human chromosome alterations and highlights the potential utility of present and future genome microarray technology in the diagnosis.

A Study on Soil Moisture Estimates Performance Using Various Land Surface Models (다양한 지표모형을 활용한 토양수분 예측 성능 평가 연구)

  • Jang, Ye-Geun;Sin, Seoung-Hun;Lee, Tae-Hwa;Jang, Won-Seok;Shin, Yong-Chul;Jang, Keun-Chang;Chun, Jung-Hwa;Kim, Jong-Gun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.1
    • /
    • pp.79-89
    • /
    • 2022
  • Soil moisture is significantly related to crop growth and plays an important role in irrigation management. To predict soil moisture, various process-based model has been developed and used in the world. Various models (Land surface model) may have different performance depending on the model parameters and structures that causes the different model output for the same modeling condition. In this study, the three land surface models (Noah Land Surface Model, Soil Water Atmosphere Plant, Community Land Model) were used to compare the model performance (soil moisture prediction) and develop the multi-model simulation. At first, the genetic algorithm was used to estimate the optimal soil parameters for each model, and the parameters were used to predict soil moisture in the study area. Then, we used the multi-model approach based on Bayesian model averaging (BMA). The results derived from this approach showed a better match to the measurements than the results from the original single land surface model. In addition, identifying the strengths and weaknesses of the single model and utilizing multi-model methods can help to increase the accuracy of soil moisture prediction.

Designing a novel mRNA vaccine against Vibrio harveyi infection in fish: an immunoinformatics approach

  • Islam, Sk Injamamul;Mou, Moslema Jahan;Sanjida, Saloa;Tariq, Muhammad;Nasir, Saad;Mahfuj, Sarower
    • Genomics & Informatics
    • /
    • v.20 no.1
    • /
    • pp.11.1-11.20
    • /
    • 2022
  • Vibrio harveyi belongs to the Vibrio genus that causes vibriosis in marine and aquatic fish species through double-stranded DNA virus replication. In humans, around 12 Vibrio species can cause gastroenteritis (gastrointestinal illness). A large amount of virus particles can be found in the cytoplasm of infected cells, which may cause death. Despite these devastating complications, there is still no cure or vaccine for the virus. As a result, we used an immunoinformatics approach to develop a multi-epitope vaccine against most pathogenic hemolysin gene of V. harveyi. The immunodominant T- and B-cell epitopes were identified using the hemolysin protein. We developed a vaccine employing three possible epitopes: cytotoxic T-lymphocytes, helper T-lymphocytes, and linear B-lymphocyte epitopes, after thorough testing. The vaccine was developed to be antigenic, immunogenic, and non-allergenic, as well as having a better solubility. Molecular dynamics simulation revealed significant structural stiffness and binding stability. In addition, the immunological simulation generated by computer revealed that the vaccination might elicit immune reactions in the actual life after injection. Finally, using Escherichia coli K12 as a model, codon optimization yielded ideal GC content and a higher codon adaptation index value, which was then included in the cloning vector pET2+ (a). Altogether, our experiment implies that the proposed peptide vaccine might be a good option for vibriosis prophylaxis.

Surgical Outcomes of Cardiac Myxoma Resection Through Right Mini-Thoracotomy

  • Changwon Shin;Min Ho Ju;Chee-Hoon Lee;Mi Hee Lim;Hyung Gon Je
    • Journal of Chest Surgery
    • /
    • v.56 no.1
    • /
    • pp.42-48
    • /
    • 2023
  • Background: With recent advances in cardiac surgery through minimal access, mini-thoracotomy has emerged as an excellent alternative for cardiac myxoma resection. This study analyzed the surgical results of this approach, focusing on postoperative cerebral embolism and tumor recurrence. Methods: We retrospectively reviewed 64 patients (mean age, 56.0±12.1 years; 40 women) who underwent myxoma resection through mini-thoracotomy from October 2008 to July 2020. We conducted femoral cannulation and antegrade cardioplegic arrest in all patients. Patient characteristics and perioperative data, including brain diffusion-weighted magnetic resonance imaging (DWI) findings, were collected. Medium-term echocardiographic follow-up was performed. Results: Thirteen patients (20.3%) had a history of preoperative stroke, and 7 (11.7%) had dyspnea with New York Heart Association functional class III or IV. Sixty-one cases (95.3%) had myxomas in the left atrium. The mean cardiopulmonary bypass and cardiac ischemic times were 69.0±28.6 and 34.1±15.0 minutes, respectively. Sternotomy conversion was not performed in any case, and 50 patients (78.1%) were extubated in the operating room. No early mortality or postoperative clinical stroke occurred. Postoperative DWI was performed in 32 (53%) patients, and 7 (22%) showed silent cerebral embolisms. One patient underwent reoperation for tumor recurrence during the study period; in that patient, a genetic study confirmed the Carney complex. Conclusion: Mini-thoracotomy for cardiac myxoma resection showed acceptable clinical and neurological outcomes. In the medium-term echocardiographic follow-up, reliable resection was proven, with few recurrences. This approach is a promising alternative for cardiac myxoma resection.

Photoprotection by Topical DNA Repair Enzymes

  • Yarosh, Daniel B.
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.186-189
    • /
    • 2002
  • Many of the adverse effects of solar UV exposure appear to be directly attributable to damage to epidermal DNA. In particular, cyclobutane pyrimidine dimers (CPD) may initiate mutagenic changes as well as induce signal transduction responses that lead to a loss of skin immune surveillance and micro-destruction of skin structure. Our approach is to reverse the DNA damage using prokaryotic DNA repair enzymes delivered into skin using specially engineered liposomes. T4 endonuclease V encapsulated in liposomes (T4N5 liposome lotion) enhanced DNA repair by shifting repair of CPD from the nucleotide excision to the base excision repair pathway. Following topical application to humans, increased repair limited UV-induction of cytokines, many of which are immunosuppressive. In a recent clinical study, topical treatment of UV-irradiated human skin with T4N5 liposome lotion reduced the suppression of the nickel sulfate contact hypersensitivity response. Similarly, the photoreactivating enzyme enhances repair by directly reversing CPDs after absorbing activating light. Here also treatment of UV-irradiated human skin with photoreactivating enzyme in liposomes and photoreactivating light restored the response to the contact allergen nickel sulfate. These findings confirm in humans the observation in mice that UV induced suppression of contact hypersensitivity is caused in part by CPDs. We have tested the ability of T4N5 liposome lotion to prevent UV-induced skin cancer in patients with xeroderma pigmentosum (XP), who have an elevated incidence of skin cancer resulting from a genetic defect in DNA repair. Daily use of the lotion for one year in a group of 20 XP patients reduced the average number of actinic keratoses by 68% and basal cell cancers by 30% compared to 9 patients in the placebo control group. Delivery of DNA repair enzymes to skin is a promising new approach to photoprotection.

  • PDF

Surgical Management of Pachyonychia Congenita in a 3-Year-Old

  • Jack D. Sudduth;Christopher Clinker;Matthew Holdaway;Jessica L. Marquez;Jacob Veith;Thomas Wright;W. Bradford Rockwell
    • Archives of Plastic Surgery
    • /
    • v.50 no.6
    • /
    • pp.573-577
    • /
    • 2023
  • Pachyonychia congenita is a rare genetic disorder characterized by hypertrophic nail plates, hyperkeratotic nail beds, and thickened hyponychium of the fingers and toes, impairing manual dexterity and resulting in poor aesthetics. The current body of literature describes various treatment modalities, but no singular approach has been defined as the gold standard. In this case, the authors employed different surgical techniques for treating pachyonychia congenita to evaluate the most effective approach. A 3-year-old boy presented with hypertrophic nail growth involving all digits of both hands and feet. Three surgical procedures were performed on the patient's fingers and toes using germinal matrix excision (GME) alone, GME plus partial sterile matrix excision (pSME), or GME plus complete sterile matrix excision (cSME). The digits treated with GME + cSME exhibited no recurrence of nail growth. Those treated with GME alone exhibited recurrence of hypertrophic nail growth, although their growth slowed. Excision of GME + cSME prevented recurrence of hypertrophic nails, while GME alone or with pSME led to slower-growing hypertrophic nails. Complete excision of the germinal and sterile matrices with skin graft closure may be a definitive treatment for pachyonychia congenita, but further studies are needed to validate these findings.

An In Silico Drug Repositioning Strategy to Identify Specific STAT-3 Inhibitors for Breast Cancer

  • Sruthy Sathish
    • Journal of Integrative Natural Science
    • /
    • v.16 no.4
    • /
    • pp.123-131
    • /
    • 2023
  • Breast cancer continues to pose a substantial worldwide health challenge, thereby requiring the development of innovative strategies to discover new therapeutic interventions. Signal Transducer and Activator of Transcription 3 (STAT-3) has been identified as a significant factor in the development of several types of cancer, including breast cancer. This is primarily attributed to its diverse functions in promoting tumour formation and conferring resistance to therapeutic interventions. This study presents an in silico drug repositioning approach that focuses on identifying specific inhibitors of STAT-3 for the purpose of treating breast cancer. We initially examined the structural and functional attributes of STAT-3, thereby elucidating its crucial involvement in cellular signalling cascades. A comprehensive virtual screening was performed on a diverse collection of drugs that have been approved by the FDA from zinc15 database. Various computational techniques, including molecular docking, cross docking, and cDFT analysis, were utilised in order to prioritise potential candidates. This prioritisation was based on their predicted binding energies and outer molecular orbital reactivity. The findings of our study have unveiled a Dihydroergotamine and Paritaprevir that have been approved by the FDA and exhibit considerable promise as selective inhibitors of STAT-3. In conclusion, the utilisation of our in silico drug repositioning approach presents a prompt and economically efficient method for the identification of potential compounds that warrant subsequent experimental validation as selective STAT-3 inhibitors in the context of breast cancer. The present study highlights the considerable potential of employing computational strategies to expedite the drug discovery process. Moreover, it provides valuable insights into novel avenues for targeted therapeutic interventions in the context of breast cancer treatment.

Comparison between Uncertainties of Cultivar Parameter Estimates Obtained Using Error Calculation Methods for Forage Rice Cultivars (오차 계산 방식에 따른 사료용 벼 품종의 품종모수 추정치 불확도 비교)

  • Young Sang Joh;Shinwoo Hyun;Kwang Soo Kim
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.3
    • /
    • pp.129-141
    • /
    • 2023
  • Crop models have been used to predict yield under diverse environmental and cultivation conditions, which can be used to support decisions on the management of forage crop. Cultivar parameters are one of required inputs to crop models in order to represent genetic properties for a given forage cultivar. The objectives of this study were to compare calibration and ensemble approaches in order to minimize the uncertainty of crop yield estimates using the SIMPLE crop model. Cultivar parameters were calibrated using Log-likelihood (LL) and Generic Composite Similarity Measure (GCSM) as an objective function for Metropolis-Hastings (MH) algorithm. In total, 20 sets of cultivar parameters were generated for each method. Two types of ensemble approach. First type of ensemble approach was the average of model outputs (Eem), using individual parameters. The second ensemble approach was model output (Epm) of cultivar parameter obtained by averaging given 20 sets of parameters. Comparison was done for each cultivar and for each error calculation methods. 'Jowoo' and 'Yeongwoo', which are forage rice cultivars used in Korea, were subject to the parameter calibration. Yield data were obtained from experiment fields at Suwon, Jeonju, Naju and I ksan. Data for 2013, 2014 and 2016 were used for parameter calibration. For validation, yield data reported from 2016 to 2018 at Suwon was used. Initial calibration indicated that genetic coefficients obtained by LL were distributed in a narrower range than coefficients obtained by GCSM. A two-sample t-test was performed to compare between different methods of ensemble approaches and no significant difference was found between them. Uncertainty of GCSM can be neutralized by adjusting the acceptance probability. The other ensemble method (Epm) indicates that the uncertainty can be reduced with less computation using ensemble approach.

Social Network-based Hybrid Collaborative Filtering using Genetic Algorithms (유전자 알고리즘을 활용한 소셜네트워크 기반 하이브리드 협업필터링)

  • Noh, Heeryong;Choi, Seulbi;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.2
    • /
    • pp.19-38
    • /
    • 2017
  • Collaborative filtering (CF) algorithm has been popularly used for implementing recommender systems. Until now, there have been many prior studies to improve the accuracy of CF. Among them, some recent studies adopt 'hybrid recommendation approach', which enhances the performance of conventional CF by using additional information. In this research, we propose a new hybrid recommender system which fuses CF and the results from the social network analysis on trust and distrust relationship networks among users to enhance prediction accuracy. The proposed algorithm of our study is based on memory-based CF. But, when calculating the similarity between users in CF, our proposed algorithm considers not only the correlation of the users' numeric rating patterns, but also the users' in-degree centrality values derived from trust and distrust relationship networks. In specific, it is designed to amplify the similarity between a target user and his or her neighbor when the neighbor has higher in-degree centrality in the trust relationship network. Also, it attenuates the similarity between a target user and his or her neighbor when the neighbor has higher in-degree centrality in the distrust relationship network. Our proposed algorithm considers four (4) types of user relationships - direct trust, indirect trust, direct distrust, and indirect distrust - in total. And, it uses four adjusting coefficients, which adjusts the level of amplification / attenuation for in-degree centrality values derived from direct / indirect trust and distrust relationship networks. To determine optimal adjusting coefficients, genetic algorithms (GA) has been adopted. Under this background, we named our proposed algorithm as SNACF-GA (Social Network Analysis - based CF using GA). To validate the performance of the SNACF-GA, we used a real-world data set which is called 'Extended Epinions dataset' provided by 'trustlet.org'. It is the data set contains user responses (rating scores and reviews) after purchasing specific items (e.g. car, movie, music, book) as well as trust / distrust relationship information indicating whom to trust or distrust between users. The experimental system was basically developed using Microsoft Visual Basic for Applications (VBA), but we also used UCINET 6 for calculating the in-degree centrality of trust / distrust relationship networks. In addition, we used Palisade Software's Evolver, which is a commercial software implements genetic algorithm. To examine the effectiveness of our proposed system more precisely, we adopted two comparison models. The first comparison model is conventional CF. It only uses users' explicit numeric ratings when calculating the similarities between users. That is, it does not consider trust / distrust relationship between users at all. The second comparison model is SNACF (Social Network Analysis - based CF). SNACF differs from the proposed algorithm SNACF-GA in that it considers only direct trust / distrust relationships. It also does not use GA optimization. The performances of the proposed algorithm and comparison models were evaluated by using average MAE (mean absolute error). Experimental result showed that the optimal adjusting coefficients for direct trust, indirect trust, direct distrust, indirect distrust were 0, 1.4287, 1.5, 0.4615 each. This implies that distrust relationships between users are more important than trust ones in recommender systems. From the perspective of recommendation accuracy, SNACF-GA (Avg. MAE = 0.111943), the proposed algorithm which reflects both direct and indirect trust / distrust relationships information, was found to greatly outperform a conventional CF (Avg. MAE = 0.112638). Also, the algorithm showed better recommendation accuracy than the SNACF (Avg. MAE = 0.112209). To confirm whether these differences are statistically significant or not, we applied paired samples t-test. The results from the paired samples t-test presented that the difference between SNACF-GA and conventional CF was statistical significant at the 1% significance level, and the difference between SNACF-GA and SNACF was statistical significant at the 5%. Our study found that the trust/distrust relationship can be important information for improving performance of recommendation algorithms. Especially, distrust relationship information was found to have a greater impact on the performance improvement of CF. This implies that we need to have more attention on distrust (negative) relationships rather than trust (positive) ones when tracking and managing social relationships between users.

Evaluation of Cabbage- and Broccoli-genetic Resources for Resistance to Clubroot and Fusarium Wilt (뿌리혹병 및 시들음병에 대한 저항성 양배추와 브로콜리 유전자원 탐색)

  • Lee, Ji Hyun;Jo, Eun Ju;Jang, Kyoung Soo;Choi, Yong Ho;Kim, Jin-Cheol;Choi, Gyung Ja
    • Research in Plant Disease
    • /
    • v.20 no.4
    • /
    • pp.235-244
    • /
    • 2014
  • Clubroot and Fusarium wilt of cole crops (Brassica oleracea L.) are destructive diseases which for many years has brought a decline in quality and large losses in yields all over the world. The breeding of resistant cultivars is an effective approach to reduce the use of chemical fungicides and minimize crop losses. This study was conducted to evaluate the resistance of 60 cabbage (B. oleracea var. capitata) and 6 broccoli (B. oleracea var. italica) lines provided by The RDA-Genebank Information Center to clubroot and Fusarium wilt. To investigate resistance to clubroot, seedlings of the genetic resources were inoculated with Plasmodiophora brassicae by drenching the roots with a mixed spore suspension (1 : 1) of two isolates. Of the tested genetic resources, four cabbage lines were moderately resistant and 'K166220' represented the highest resistance to P. brassicae. The others were susceptible to clubroot. On the other hand, to select resistant plants to Fusarium wilt, the genetic resources were inoculated with Fusarium oxysporum f. sp. conglutinans by dipping the roots in spore suspension of the fungus. Among them, 17 cabbage and 5 broccoli lines were resistant, 16 cabbage lines were moderately resistant, and the others were susceptible to Fusarium wilt. Especially, three cabbage ('IT227115', 'K161791', 'K173350') and two broccoli ('IT227100', 'IT227099') lines were highly resistant to the fungus. We suggest that the resistant genetic resources can be used as a basic material for resistant B. oleracea breeding system against clubroot and Fusarium wilt.