• 제목/요약/키워드: Genes

검색결과 11,919건 처리시간 0.031초

식이유도 비만 동물모델에서 마르멜로추출물의 항비만 효능 비교 연구 (A Comparative Study on Anti-Obesity Efficacy of Cydonia oblonga Miller Fruit Extract in Diet-Induced Obesity Animal Models)

  • 황정순;황명오;권기성;김은지
    • 한방비만학회지
    • /
    • 제24권1호
    • /
    • pp.13-24
    • /
    • 2024
  • Objectives: The objective of this study was to explore the anti-obesity effect of Cydonia oblonga Miller fruit extract (COME) and to compare its anti-obesity efficacy with Garcinia cambogia extract (GCE) in diet-induced obese mice. Methods: Five-week-old male C57BL/6 were allocated into four groups: control diet (CD), high-fat diet (HFD), HFD + 400 mg/kg body weight (BW)/day COME (H+C), or HFD + 400 mg/kg BW/day GCE (H+G) groups. COME or GCE was administered once a day by oral gavage for eight weeks. Body weight, body fat percentage, fat weight, and biochemical parameters in serum were measured. The expressions of transcription factors and their target genes in epididymal adipose tissues were analyzed by reverse transcription polymerase chain reaction. Results: COME reduced body weight, weight gain, body fat percentage, total white adipose tissue weight, adipocyte size, and serum levels of insulin and leptin in high-fat diet-induced obese C57BL/6 mice. COME suppressed the mRNA expressions of CCAAT/enhancer binding proteinα, peroxisome proliferator-activated receptorγ, sterol-regulatory element-binding protein-1c, fatty acid synthase, and adipocyte protein 2 and increased carnitine palmitoyl transferase 1 mRNA expression in epidydimal adipose tissues. The anti-obesity efficacy of COME was found to be similar to that of GCE at the same dose. However, COME more effectively decreased adipose tissue weights, epididymal adipocyte size, serum insulin and leptin compared to GCE. Conclusions: These results demonstrated that COME is not toxic and exhibits anti-obesity efficacy at a level similar to that of GCE, suggesting that COME may be applicable as an anti-obesity agent.

Construction of a New Agrobacterium tumefaciens-Mediated Transformation System based on a Dual Auxotrophic Approach in Cordyceps militaris

  • Huan huan Yan;Yi tong Shang;Li hong Wang;Xue qin Tian;Van-Tuan Tran;Li hua Yao;Bin Zeng;Zhi hong Hu
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권5호
    • /
    • pp.1178-1187
    • /
    • 2024
  • Cordyceps militaris is a significant edible fungus that produces a variety of bioactive compounds. We have previously established a uridine/uracil auxotrophic mutant and a corresponding Agrobacterium tumefaciens-mediated transformation (ATMT) system for genetic characterization in C. militaris using pyrG as a screening marker. In this study, we constructed an ATMT system based on a dual pyrG and hisB auxotrophic mutant of C. militaris. Using the uridine/uracil auxotrophic mutant as the background and pyrG as a selection marker, the hisB gene encoding imidazole glycerophosphate dehydratase, required for histidine biosynthesis, was knocked out by homologous recombination to construct a histidine auxotrophic C. militaris mutant. Then, pyrG in the histidine auxotrophic mutant was deleted to construct a ΔpyrG ΔhisB dual auxotrophic mutant. Further, we established an ATMT transformation system based on the dual auxotrophic C. militaris by using GFP and DsRed as reporter genes. Finally, to demonstrate the application of this dual transformation system for studies of gene function, knock out and complementation of the photoreceptor gene CmWC-1 in the dual auxotrophic C. militaris were performed. The newly constructed ATMT system with histidine and uridine/uracil auxotrophic markers provides a promising tool for genetic modifications in the medicinal fungus C. militaris.

Immune Enhancement Effects of Neutral Lipids, Glycolipids, Phospholipids from Halocynthia aurantium Tunic on RAW264.7 Macrophages

  • A-yeong Jang;Weerawan Rod-in;Il-shik Shin;Woo Jung Park
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권2호
    • /
    • pp.476-483
    • /
    • 2024
  • Fractionated lipids of Halocynthia aurantium (Pyuridae) have been demonstrated to possess anti-inflammatory properties. However, their modulatory properties have not been reported yet. Thus, the objective of this study was to determine immune enhancing effects of fractionated lipids from H. aurantium tunic on macrophage cells. The tunic of H. aurantium was used to isolate total lipids, which were then subsequently separated into neutral lipids, glycolipids, and phospholipids. RAW264.7 cells were stimulated with different concentrations (0.5, 1.0, 2.0, and 4.0%) of each fractionated lipid. Cytotoxicity, production of NO, expression levels of immune-associated genes, and signaling pathways were then determined. Neutral lipids and glycolipids significantly stimulated NO and PGE2 production and expression levels of IL-1β, IL-6, TNF-α, and COX-2 in a dose-dependent manner, while phospholipids ineffectively induced NO production and mRNA expression. Furthermore, it was found that both neutral lipids and glycolipids increased NF-κB p-65, p38, ERK1/2, and JNK phosphorylation, suggesting that these lipids might enhance immunity by activating NF-κB and MAPK signaling pathways. In addition, H. aurantium lipids-induced TNF-α expression was decreased by blocking MAPK or NF-κB signaling pathways. Phagocytic activity of RAW 264.7 cells was also significantly enhanced by neutral lipids and glycolipids. These results suggest that neutral lipids and glycolipids from H. aurantium tunic have potential as immune-enhancing materials.

Anti-Obesity Effect of Lactobacillus acidophilus DS0079 (YBS1) by Inhibition of Adipocyte Differentiation through Regulation of p38 MAPK/PPARγ Signaling

  • Youri Lee;Navid Iqbal;Mi-Hwa Lee;Doo-Sang Park;Yong-Sik Kim
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권5호
    • /
    • pp.1073-1081
    • /
    • 2024
  • Obesity is spawned by an inequality between the portion of energy consumed and the quantity of energy expended. Disease entities such as cardiovascular disease, arteriosclerosis, hypertension, and cancer, which are correlated with obesity, influence society and the economy. Suppression of adipogenesis, the process of white adipocyte generation, remains a promising approach for treating obesity. Oil Red O staining was used to differentiate 3T3-L1 cells for screening 20 distinct Lactobacillus species. Among these, Lactobacillus acidophilus DS0079, referred to as YBS1, was selected for further study. YBS1 therapy decreased 3T3-L1 cell development. Triglyceride accumulation and mRNA expression of the primary adipogenic marker, peroxisome proliferator-activated receptor gamma (PPARγ), including its downstream target genes, adipocyte fatty acid binding protein 4 and adiponectin, were almost eliminated. YBS1 inhibited adipocyte differentiation at the early stage (days 0-2), but no significant difference was noted between the mid-stage (days 2-4) and late-stage (days 4-6) development. YBS1 stimulated the activation of p38 mitogen-activated protein kinase (p38 MAPK) during the early stages of adipogenesis; however, this effect was eliminated by the SB203580 inhibitor. The data showed that YBS1 administration inhibited the initial development of adipocytes via stimulation of the p38 MAPK signaling pathway, which in turn controlled PPARγ expression. In summary, YBS1 has potential efficacy as an anti-obesity supplement and requires further exploration.

Validating a Xylose Regulator to Increase Polyhydroxybutyrate Production for Utilizing Mixed Sugars from Lignocellulosic Biomass Using Escherichia coli

  • Suk-Jin Oh;Hong-Ju Lee;Jeong Hyeon Hwang;Hyun Jin Kim;Nara-Shin;Sang-Ho Lee;Seung-Oh Seo;Shashi Kant Bhatia;Yung-Hun Yang
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권3호
    • /
    • pp.700-709
    • /
    • 2024
  • Polyhydroxybutyrate (PHB) production from lignocellulosic biomass is economically beneficial. Because lignocellulosic biomass is a mixture rich in glucose and xylose, Escherichia coli, which prefers glucose, needs to overcome glucose repression for efficient biosugar use. To avoid glucose repression, here, we overexpressed a xylose regulator (xylR) in an E. coli strain expressing bktB, phaB, and phaC from Cupriavidus necator and evaluated the effect of xylR on PHB production. XylR overexpression increased xylose consumption from 0% to 46.53% and produced 4.45-fold more PHB than the control strain without xylR in a 1% sugar mixture of glucose and xylose (1:1). When the xylR-overexpressed strain was applied to sugars from lignocellulosic biomass, cell growth and PHB production of the strain showed a 4.7-fold increase from the control strain, yielding 2.58 ± 0.02 g/l PHB and 4.43 ± 0.28 g/l dry cell weight in a 1% hydrolysate mixture. XylR overexpression increased the expression of xylose operon genes by up to 1.7-fold. Moreover, the effect of xylR was substantially different in various E. coli strains. Overall, the results showed the effect of xylR overexpression on PHB production in a non-native PHB producer and the possible application of xylR for xylose utilization in E. coli.

Molecular and Phenotypic Investigation on Antibacterial Activities of Limonene Isomers and Its Oxidation Derivative against Xanthomonas oryzae pv. oryzae

  • Hyeonbin Kim;Mi Hee Kim;Ui-Lim Choi;Moon-Soo Chung;Chul-Ho Yun;Youngkun Shim;Jaejun Oh;Sungbeom Lee;Gun Woong Lee
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권3호
    • /
    • pp.562-569
    • /
    • 2024
  • Xanthomonas oryzae pv. oryzae (Xoo) causes a devastating bacterial leaf blight in rice. Here, the antimicrobial effects of ᴰ-limonene, ᴸ-limonene, and its oxidative derivative carveol against Xoo were investigated. We revealed that carveol treatment at ≥ 0.1 mM in liquid culture resulted in significant decrease in Xoo growth rate (> 40%) in a concentration-dependent manner, and over 1 mM, no growth was observed. The treatment with ᴰ-limonene and ᴸ-limonene also inhibited the Xoo growth but to a lesser extent compared to carveol. These results were further elaborated with the assays of motility, biofilm formation and xanthomonadin production. The carveol treatment over 1 mM caused no motilities, basal level of biofilm formation (< 10%), and significantly reduced xanthomonadin production. The biofilm formation after the treatment with two limonene isomers was decreased in a concentration-dependent manner, but the degree of the effect was not comparable to carveol. In addition, there was negligible effect on the xanthomonadin production mediated by the treatment of two limonene isomers. Field emission-scanning electron microscope (FE-SEM) unveiled that all three compounds used in this study cause severe ultrastructural morphological changes in Xoo cells, showing shrinking, shriveling, and holes on their surface. Moreover, quantitative real-time PCR revealed that carveol and ᴰ-limonene treatment significantly down-regulated the expression levels of genes involved in virulence and biofilm formation of Xoo, but not with ᴸ-limonene. Together, we suggest that limonenes and carveol will be the candidates of interest in the development of biological pesticides.

Biosynthesis of Apigenin Glucosides in Engineered Corynebacterium glutamicum

  • Obed Jackson Amoah;Samir Bahadur Thapa;Su Yeong Ma;Hue Thi Nguyen;Morshed Md Zakaria;Jae Kyung Sohng
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권5호
    • /
    • pp.1154-1163
    • /
    • 2024
  • Glucosylation is a well-known approach to improve the solubility, pharmacological, and biological properties of flavonoids, making flavonoid glucosides a target for large-scale biosynthesis. However, the low yield of products coupled with the requirement of expensive UDP-sugars limits the application of enzymatic systems for large-scale. C. glutamicum is a Gram-positive and generally regarded as safe (GRAS) bacteria frequently employed for the large-scale production of amino acids and biofuels. Due to the versatility of its cell factory system and its non-endotoxin producing properties, it has become an attractive system for the industrial-scale biosynthesis of alternate products. Here, we explored the cell factory of C. glutamicum for efficient glucosylation of flavonoids using apigenin as a model flavonoid, with the heterologous expression of a promiscuous glycosyltransferase, YdhE from Bacillus licheniformis and the endogenous overexpression of C. glutamicum genes galU1 encoding UDP-glucose pyrophosphorylase and pgm encoding phosphoglucomutase involved in the synthesis of UDP-glucose to create a C. glutamicum cell factory system capable of efficiently glucosylation apigenin with a high yield of glucosides production. Consequently, the production of various apigenin glucosides was controlled under different temperatures yielding almost 4.2 mM of APG1(apigenin-4'-O-β-glucoside) at 25℃, and 0.6 mM of APG2 (apigenin-7-O-β-glucoside), 1.7 mM of APG3 (apigenin-4',7-O-β-diglucoside) and 2.1 mM of APG4 (apigenin- 4',5-O-β-diglucoside) after 40 h of incubation with the supplementation of 5 mM of apigenin and 37℃. The cost-effective developed system could be used to modify a wide range of plant secondary metabolites with increased pharmacokinetic activities on a large scale without the use of expensive UDP-sugars.

유전자 발현을 활용한 루테튬 (177Lu)의 암 치료 효능 검증 (Verification of the Cancer Therapeutic Efficacy of Lutetium-177 Using Gene Expression)

  • 김다미;이소영;임재청;최강혁
    • 방사선산업학회지
    • /
    • 제17권4호
    • /
    • pp.417-425
    • /
    • 2023
  • Lutetium(177Lu), with its theranostic properties, is one of the most widely used radioisotopes and has a large share of the radiopharmaceutical market due to its many applications and targeted therapeutic research using lutetium-based radiopharmaceuticals. However, lutetium-based radiopharmaceuticals currently approved by the US Food and Drug Administration (FDA) are limited to the indications of gastrointestinal cancer, pancreatic neuroendocrine cancer and metastatic castration-resistant prostate cancer. To overcome these limitations, we aimed to demonstrate the feasibility of expanding the use of lutetium-based radiopharmaceuticals by verifying the availability and therapeutic efficacy of lutetium produced in a research reactor(HANARO). In this study, we confirmed the therapeutic efficacy of lutetium by using cancer cells from different types of cancer. In addition, we selected cancer biomarkers based on characteristics common to various cancer cells and compared and evaluated the therapeutic efficacy of lutetium by regulating the expression of target genes. The results showed that modulation of cancer biomarker gene expression resulted in higher therapeutic efficacy compared to lutetium alone. In conclusion, this study verified the potential use and therapeutic efficacy of lutetium based on the production of a research reactor (HANARO), providing fundamental evidence for the development of lutetium-based radiopharmaceuticals and the expansion of their indications.

Overproduction of Xanthophyll Pigment in Flavobacterium sp. JSWR-1 under Optimized Culture Conditions

  • Jegadeesh Raman;Young-Joon Ko;Jeong-Seon Kim;Da-Hye Kim;Soo-Jin Kim
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권3호
    • /
    • pp.710-724
    • /
    • 2024
  • Flavobacterium can synthesize xanthophyll, particularly the pigment zeaxanthin, which has significant economic value in nutrition and pharmaceuticals. Recently, the use of carotenoid biosynthesis by bacteria and yeast fermentation technology has shown to be very efficient and offers significant advantages in large-scale production, cost-effectiveness, and safety. In the present study, JSWR-1 strain capable of producing xanthophyll pigment was isolated from a freshwater reservoir in Wanju-gun, Republic of Korea. Based on the morphological, physiological, and molecular characteristics, JSWR-1 classified as belonging to the Flavobacterium species. The bacterium is strictly aerobic, Gram-negative, rod-shaped, and psychrophilic. The completed genome sequence of the strain Flavobacterium sp. JSWR-1 is predicted to be a single circular 3,425,829-bp chromosome with a G+C content of 35.2% and 2,941 protein-coding genes. The optimization of carotenoid production was achieved by small-scale cultivation, resulting in zeaxanthin being identified as the predominant carotenoid pigment. The enhancement of zeaxanthin biosynthesis by applying different light-irradiation, variations in pH and temperature, and adding carbon and nitrogen supplies to the growth medium. A significant increase in intracellular zeaxanthin concentrations was also recorded during fed-batch fermentation achieving a maximum of 16.69 ± 0.71 mg/l, corresponding to a product yield of 4.05 ± 0.15 mg zeaxanthin per gram cell dry weight. Batch and fed-batch culture extracts exhibit significant antioxidant activity. The results demonstrated that the JSWR-1 strain can potentially serve as a source for zeaxanthin biosynthesis.

Production of Exopolysaccharides and İndole Acetic Acid (IAA) by Rhizobacteria and Their Potential against Drought Stress in Upland Rice

  • Tetty Marta Linda;Jusinta Aliska;Nita Feronika;Ineiga Melisa;Erwina Juliantari
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권6호
    • /
    • pp.1239-1248
    • /
    • 2024
  • Peatlands are marginal agricultural lands due to highly acidic soil conditions and poor drainage systems. Drought stress is a big problem in peatlands as it can affect plants through poor root development, so technological innovations are needed to increase the productivity and sustainability of upland rice on peatlands. Rhizobacteria can overcome the effects of drought stress by altering root morphology, regulating stress-responsive genes, and producing exopolysaccharides and indole acetic acid (IAA). This study aimed to determine the ability of rhizobacteria in upland rice to produce exopolysaccharides and IAA, identify potential isolates using molecular markers, and prove the effect of rhizobacteria on viability and vigor index in upland rice. Rhizobacterial isolates were grown on yeast extract mannitol broth (YEMB) medium for exopolysaccharides production testing and Nutrient Broth (NB)+L-tryptophan medium for IAA production testing. The selected isolates identify using sequence 16S rRNA. The variables observed in testing the effect of rhizobacteria were germination ability, vigour index, and growth uniformity. EPS-1 isolate is the best production of exopolysaccharides (41.6 mg/ml) and IAA (60.83 ppm). The isolate EPS-1 was identified as Klebsiella variicola using 16S rRNA sequencing and phylogenetic analysis. The isolate EPS-1 can increase the viability and vigor of upland rice seeds. K. variicola is more adaptive and has several functional properties that can be developed as a potential bioagent or biofertilizer to improve soil nutrition, moisture and enhance plant growth. The use of rhizobacteria can reduce dependence on the use of synthetic materials with sustainable agriculture.