• Title/Summary/Keyword: Genes

Search Result 11,798, Processing Time 0.038 seconds

Exosomes from Tension Force-Applied Periodontal Ligament Cells Promote Mesenchymal Stem Cell Recruitment by Altering microRNA Profiles

  • Maolin Chang;Qianrou Chen;Beike Wang;Zhen Zhang;Guangli Han
    • International Journal of Stem Cells
    • /
    • v.16 no.2
    • /
    • pp.202-214
    • /
    • 2023
  • Background and Objectives: To investigate the role of exosomes from periodontal ligament cells (PDLCs) in bone marrow mesenchymal stem cell (BMSC) migration. Methods and Results: Human PDLCs were applied cyclic tension stretching. Exosomes were extracted from cultured PDLCs by ultracentrifugation, then characterized for their size, morphology and protein markers by NTA, TEM and western blotting. The process that PKH26-labeled exosomes taken up by BMSCs was assessed by confocal microscope. BMSC migration was examined by Transwell assay. Exosomes derived from PDLCs were identified. Cyclic tension stretch application on PDLCs can enhance the migration ability of BMSCs through exosomes. The exosomal miRNA expression profiles of unstretched and stretched PDLCs were tested by miRNA microarray. Four miRNAs (miR-4633-5p, miR-30c-5p, miR-371a-3p and let-7b-3p) were upregulated and six (miR-4689, miR-8485, miR-4655-3p, miR-4672, miR-3180-5p and miR-4476) were downregulated in the exosomes after stretching. Sixteen hub proteins were found in the miRNA-mRNA network. Gene Ontology and KEGG pathway analyses demonstrated that the target genes of differentially expressed exosomal miRNAs closely related to the PI3K pathway and vesicle transmission. Conclusions: The exosomes derived from cyclic tension-stretched PDLCs can promote the migration of BMSCs. Alternation of microRNA profiles provides a basis for further research on the regulatory function of the exosomal miRNAs of PDLCs during orthodontic tooth movement.

Differentiation and Characterization of Cystic Fibrosis Transmembrane Conductance Regulator Knockout Human Pluripotent Stem Cells into Salivary Gland Epithelial Progenitors

  • Shuang Yan;Yifei Zhang;Siqi Zhang;Shicheng Wei
    • International Journal of Stem Cells
    • /
    • v.16 no.4
    • /
    • pp.394-405
    • /
    • 2023
  • The differentiation of pluripotent stem cells has been used to study disease mechanisms and development. We previously described a method for differentiating human pluripotent stem cells (hPSCs) into salivary gland epithelial progenitors (SGEPs). Here, cystic fibrosis transmembrane conductance regulator (CFTR) knockout hPSCs were differentiated into SGEPs derived from CFTR knockout hESCs (CF-SGEPs) using the same protocol to investigate whether the hPSC-derived SGEPs can model the characteristics of CF. CF-a disease that affects salivary gland (SG) function-is caused by mutations of the CFTR gene. Firstly, we successfully generated CFTR knockout hPSCs with reduced CFTR protein expression using the CRISPR-Cas9 system. After 16 days of differentiation, the protein expression of CFTR decreased in SGEPs derived from CFTR knockout hESCs (CF-SGEPs). RNA-Seq revealed that multiple genes modulating SG development and function were down-regulated, and positive regulators of inflammation were up-regulated in CF-SGEPs, correlating with the salivary phenotype of CF patients. These results demonstrated that CFTR suppression disrupted the differentiation of hPSC-derived SGEPs, which modeled the SG development of CF patients. In summary, this study not only proved that the hPSC-derived SGEPs could serve as manipulable and readily accessible cell models for the study of SG developmental diseases but also opened up new avenues for the study of the CF mechanism.

A Comparative Study on Anti-Obesity Efficacy of Cydonia oblonga Miller Fruit Extract in Diet-Induced Obesity Animal Models (식이유도 비만 동물모델에서 마르멜로추출물의 항비만 효능 비교 연구)

  • Jung Soon Hwang;Myeong Oh Hwang;Kisung Kwon;Eun Ji Kim
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.24 no.1
    • /
    • pp.13-24
    • /
    • 2024
  • Objectives: The objective of this study was to explore the anti-obesity effect of Cydonia oblonga Miller fruit extract (COME) and to compare its anti-obesity efficacy with Garcinia cambogia extract (GCE) in diet-induced obese mice. Methods: Five-week-old male C57BL/6 were allocated into four groups: control diet (CD), high-fat diet (HFD), HFD + 400 mg/kg body weight (BW)/day COME (H+C), or HFD + 400 mg/kg BW/day GCE (H+G) groups. COME or GCE was administered once a day by oral gavage for eight weeks. Body weight, body fat percentage, fat weight, and biochemical parameters in serum were measured. The expressions of transcription factors and their target genes in epididymal adipose tissues were analyzed by reverse transcription polymerase chain reaction. Results: COME reduced body weight, weight gain, body fat percentage, total white adipose tissue weight, adipocyte size, and serum levels of insulin and leptin in high-fat diet-induced obese C57BL/6 mice. COME suppressed the mRNA expressions of CCAAT/enhancer binding proteinα, peroxisome proliferator-activated receptorγ, sterol-regulatory element-binding protein-1c, fatty acid synthase, and adipocyte protein 2 and increased carnitine palmitoyl transferase 1 mRNA expression in epidydimal adipose tissues. The anti-obesity efficacy of COME was found to be similar to that of GCE at the same dose. However, COME more effectively decreased adipose tissue weights, epididymal adipocyte size, serum insulin and leptin compared to GCE. Conclusions: These results demonstrated that COME is not toxic and exhibits anti-obesity efficacy at a level similar to that of GCE, suggesting that COME may be applicable as an anti-obesity agent.

Construction of a New Agrobacterium tumefaciens-Mediated Transformation System based on a Dual Auxotrophic Approach in Cordyceps militaris

  • Huan huan Yan;Yi tong Shang;Li hong Wang;Xue qin Tian;Van-Tuan Tran;Li hua Yao;Bin Zeng;Zhi hong Hu
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.5
    • /
    • pp.1178-1187
    • /
    • 2024
  • Cordyceps militaris is a significant edible fungus that produces a variety of bioactive compounds. We have previously established a uridine/uracil auxotrophic mutant and a corresponding Agrobacterium tumefaciens-mediated transformation (ATMT) system for genetic characterization in C. militaris using pyrG as a screening marker. In this study, we constructed an ATMT system based on a dual pyrG and hisB auxotrophic mutant of C. militaris. Using the uridine/uracil auxotrophic mutant as the background and pyrG as a selection marker, the hisB gene encoding imidazole glycerophosphate dehydratase, required for histidine biosynthesis, was knocked out by homologous recombination to construct a histidine auxotrophic C. militaris mutant. Then, pyrG in the histidine auxotrophic mutant was deleted to construct a ΔpyrG ΔhisB dual auxotrophic mutant. Further, we established an ATMT transformation system based on the dual auxotrophic C. militaris by using GFP and DsRed as reporter genes. Finally, to demonstrate the application of this dual transformation system for studies of gene function, knock out and complementation of the photoreceptor gene CmWC-1 in the dual auxotrophic C. militaris were performed. The newly constructed ATMT system with histidine and uridine/uracil auxotrophic markers provides a promising tool for genetic modifications in the medicinal fungus C. militaris.

Immune Enhancement Effects of Neutral Lipids, Glycolipids, Phospholipids from Halocynthia aurantium Tunic on RAW264.7 Macrophages

  • A-yeong Jang;Weerawan Rod-in;Il-shik Shin;Woo Jung Park
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.476-483
    • /
    • 2024
  • Fractionated lipids of Halocynthia aurantium (Pyuridae) have been demonstrated to possess anti-inflammatory properties. However, their modulatory properties have not been reported yet. Thus, the objective of this study was to determine immune enhancing effects of fractionated lipids from H. aurantium tunic on macrophage cells. The tunic of H. aurantium was used to isolate total lipids, which were then subsequently separated into neutral lipids, glycolipids, and phospholipids. RAW264.7 cells were stimulated with different concentrations (0.5, 1.0, 2.0, and 4.0%) of each fractionated lipid. Cytotoxicity, production of NO, expression levels of immune-associated genes, and signaling pathways were then determined. Neutral lipids and glycolipids significantly stimulated NO and PGE2 production and expression levels of IL-1β, IL-6, TNF-α, and COX-2 in a dose-dependent manner, while phospholipids ineffectively induced NO production and mRNA expression. Furthermore, it was found that both neutral lipids and glycolipids increased NF-κB p-65, p38, ERK1/2, and JNK phosphorylation, suggesting that these lipids might enhance immunity by activating NF-κB and MAPK signaling pathways. In addition, H. aurantium lipids-induced TNF-α expression was decreased by blocking MAPK or NF-κB signaling pathways. Phagocytic activity of RAW 264.7 cells was also significantly enhanced by neutral lipids and glycolipids. These results suggest that neutral lipids and glycolipids from H. aurantium tunic have potential as immune-enhancing materials.

Anti-Obesity Effect of Lactobacillus acidophilus DS0079 (YBS1) by Inhibition of Adipocyte Differentiation through Regulation of p38 MAPK/PPARγ Signaling

  • Youri Lee;Navid Iqbal;Mi-Hwa Lee;Doo-Sang Park;Yong-Sik Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.5
    • /
    • pp.1073-1081
    • /
    • 2024
  • Obesity is spawned by an inequality between the portion of energy consumed and the quantity of energy expended. Disease entities such as cardiovascular disease, arteriosclerosis, hypertension, and cancer, which are correlated with obesity, influence society and the economy. Suppression of adipogenesis, the process of white adipocyte generation, remains a promising approach for treating obesity. Oil Red O staining was used to differentiate 3T3-L1 cells for screening 20 distinct Lactobacillus species. Among these, Lactobacillus acidophilus DS0079, referred to as YBS1, was selected for further study. YBS1 therapy decreased 3T3-L1 cell development. Triglyceride accumulation and mRNA expression of the primary adipogenic marker, peroxisome proliferator-activated receptor gamma (PPARγ), including its downstream target genes, adipocyte fatty acid binding protein 4 and adiponectin, were almost eliminated. YBS1 inhibited adipocyte differentiation at the early stage (days 0-2), but no significant difference was noted between the mid-stage (days 2-4) and late-stage (days 4-6) development. YBS1 stimulated the activation of p38 mitogen-activated protein kinase (p38 MAPK) during the early stages of adipogenesis; however, this effect was eliminated by the SB203580 inhibitor. The data showed that YBS1 administration inhibited the initial development of adipocytes via stimulation of the p38 MAPK signaling pathway, which in turn controlled PPARγ expression. In summary, YBS1 has potential efficacy as an anti-obesity supplement and requires further exploration.

Validating a Xylose Regulator to Increase Polyhydroxybutyrate Production for Utilizing Mixed Sugars from Lignocellulosic Biomass Using Escherichia coli

  • Suk-Jin Oh;Hong-Ju Lee;Jeong Hyeon Hwang;Hyun Jin Kim;Nara-Shin;Sang-Ho Lee;Seung-Oh Seo;Shashi Kant Bhatia;Yung-Hun Yang
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.700-709
    • /
    • 2024
  • Polyhydroxybutyrate (PHB) production from lignocellulosic biomass is economically beneficial. Because lignocellulosic biomass is a mixture rich in glucose and xylose, Escherichia coli, which prefers glucose, needs to overcome glucose repression for efficient biosugar use. To avoid glucose repression, here, we overexpressed a xylose regulator (xylR) in an E. coli strain expressing bktB, phaB, and phaC from Cupriavidus necator and evaluated the effect of xylR on PHB production. XylR overexpression increased xylose consumption from 0% to 46.53% and produced 4.45-fold more PHB than the control strain without xylR in a 1% sugar mixture of glucose and xylose (1:1). When the xylR-overexpressed strain was applied to sugars from lignocellulosic biomass, cell growth and PHB production of the strain showed a 4.7-fold increase from the control strain, yielding 2.58 ± 0.02 g/l PHB and 4.43 ± 0.28 g/l dry cell weight in a 1% hydrolysate mixture. XylR overexpression increased the expression of xylose operon genes by up to 1.7-fold. Moreover, the effect of xylR was substantially different in various E. coli strains. Overall, the results showed the effect of xylR overexpression on PHB production in a non-native PHB producer and the possible application of xylR for xylose utilization in E. coli.

Molecular and Phenotypic Investigation on Antibacterial Activities of Limonene Isomers and Its Oxidation Derivative against Xanthomonas oryzae pv. oryzae

  • Hyeonbin Kim;Mi Hee Kim;Ui-Lim Choi;Moon-Soo Chung;Chul-Ho Yun;Youngkun Shim;Jaejun Oh;Sungbeom Lee;Gun Woong Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.562-569
    • /
    • 2024
  • Xanthomonas oryzae pv. oryzae (Xoo) causes a devastating bacterial leaf blight in rice. Here, the antimicrobial effects of ᴰ-limonene, ᴸ-limonene, and its oxidative derivative carveol against Xoo were investigated. We revealed that carveol treatment at ≥ 0.1 mM in liquid culture resulted in significant decrease in Xoo growth rate (> 40%) in a concentration-dependent manner, and over 1 mM, no growth was observed. The treatment with ᴰ-limonene and ᴸ-limonene also inhibited the Xoo growth but to a lesser extent compared to carveol. These results were further elaborated with the assays of motility, biofilm formation and xanthomonadin production. The carveol treatment over 1 mM caused no motilities, basal level of biofilm formation (< 10%), and significantly reduced xanthomonadin production. The biofilm formation after the treatment with two limonene isomers was decreased in a concentration-dependent manner, but the degree of the effect was not comparable to carveol. In addition, there was negligible effect on the xanthomonadin production mediated by the treatment of two limonene isomers. Field emission-scanning electron microscope (FE-SEM) unveiled that all three compounds used in this study cause severe ultrastructural morphological changes in Xoo cells, showing shrinking, shriveling, and holes on their surface. Moreover, quantitative real-time PCR revealed that carveol and ᴰ-limonene treatment significantly down-regulated the expression levels of genes involved in virulence and biofilm formation of Xoo, but not with ᴸ-limonene. Together, we suggest that limonenes and carveol will be the candidates of interest in the development of biological pesticides.

Biosynthesis of Apigenin Glucosides in Engineered Corynebacterium glutamicum

  • Obed Jackson Amoah;Samir Bahadur Thapa;Su Yeong Ma;Hue Thi Nguyen;Morshed Md Zakaria;Jae Kyung Sohng
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.5
    • /
    • pp.1154-1163
    • /
    • 2024
  • Glucosylation is a well-known approach to improve the solubility, pharmacological, and biological properties of flavonoids, making flavonoid glucosides a target for large-scale biosynthesis. However, the low yield of products coupled with the requirement of expensive UDP-sugars limits the application of enzymatic systems for large-scale. C. glutamicum is a Gram-positive and generally regarded as safe (GRAS) bacteria frequently employed for the large-scale production of amino acids and biofuels. Due to the versatility of its cell factory system and its non-endotoxin producing properties, it has become an attractive system for the industrial-scale biosynthesis of alternate products. Here, we explored the cell factory of C. glutamicum for efficient glucosylation of flavonoids using apigenin as a model flavonoid, with the heterologous expression of a promiscuous glycosyltransferase, YdhE from Bacillus licheniformis and the endogenous overexpression of C. glutamicum genes galU1 encoding UDP-glucose pyrophosphorylase and pgm encoding phosphoglucomutase involved in the synthesis of UDP-glucose to create a C. glutamicum cell factory system capable of efficiently glucosylation apigenin with a high yield of glucosides production. Consequently, the production of various apigenin glucosides was controlled under different temperatures yielding almost 4.2 mM of APG1(apigenin-4'-O-β-glucoside) at 25℃, and 0.6 mM of APG2 (apigenin-7-O-β-glucoside), 1.7 mM of APG3 (apigenin-4',7-O-β-diglucoside) and 2.1 mM of APG4 (apigenin- 4',5-O-β-diglucoside) after 40 h of incubation with the supplementation of 5 mM of apigenin and 37℃. The cost-effective developed system could be used to modify a wide range of plant secondary metabolites with increased pharmacokinetic activities on a large scale without the use of expensive UDP-sugars.

Overproduction of Xanthophyll Pigment in Flavobacterium sp. JSWR-1 under Optimized Culture Conditions

  • Jegadeesh Raman;Young-Joon Ko;Jeong-Seon Kim;Da-Hye Kim;Soo-Jin Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.710-724
    • /
    • 2024
  • Flavobacterium can synthesize xanthophyll, particularly the pigment zeaxanthin, which has significant economic value in nutrition and pharmaceuticals. Recently, the use of carotenoid biosynthesis by bacteria and yeast fermentation technology has shown to be very efficient and offers significant advantages in large-scale production, cost-effectiveness, and safety. In the present study, JSWR-1 strain capable of producing xanthophyll pigment was isolated from a freshwater reservoir in Wanju-gun, Republic of Korea. Based on the morphological, physiological, and molecular characteristics, JSWR-1 classified as belonging to the Flavobacterium species. The bacterium is strictly aerobic, Gram-negative, rod-shaped, and psychrophilic. The completed genome sequence of the strain Flavobacterium sp. JSWR-1 is predicted to be a single circular 3,425,829-bp chromosome with a G+C content of 35.2% and 2,941 protein-coding genes. The optimization of carotenoid production was achieved by small-scale cultivation, resulting in zeaxanthin being identified as the predominant carotenoid pigment. The enhancement of zeaxanthin biosynthesis by applying different light-irradiation, variations in pH and temperature, and adding carbon and nitrogen supplies to the growth medium. A significant increase in intracellular zeaxanthin concentrations was also recorded during fed-batch fermentation achieving a maximum of 16.69 ± 0.71 mg/l, corresponding to a product yield of 4.05 ± 0.15 mg zeaxanthin per gram cell dry weight. Batch and fed-batch culture extracts exhibit significant antioxidant activity. The results demonstrated that the JSWR-1 strain can potentially serve as a source for zeaxanthin biosynthesis.