• Title/Summary/Keyword: Generators constant

Search Result 69, Processing Time 0.023 seconds

Research trend in Fabrication of Metastable-phase Iron Nitrides for Hard Magnetic Applications (준안정상 기반의 질화철계 영구자석소재 제조연구동향)

  • Kim, Kyung Min;Lee, Jung-Goo;Kim, Kyung Tae;Baek, Youn-Kyoung
    • Journal of Powder Materials
    • /
    • v.26 no.2
    • /
    • pp.146-155
    • /
    • 2019
  • Rare earth magnets are the strongest type of permanent magnets and are integral to the high tech industry, particularly in clean energies, such as electric vehicle motors and wind turbine generators. However, the cost of rare earth materials and the imbalance in supply and demand still remain big problems to solve for permanent magnet related industries. Thus, a magnet with abundant elements and moderate magnetic performance is required to replace rare-earth magnets. Recently, $a^{{\prime}{\prime}}-Fe_{16}N_2$ has attracted considerable attention as a promising candidate for next-generation non-rare-earth permanent magnets due to its gigantic magnetization (3.23 T). Also, metastable $a^{{\prime}{\prime}}-Fe_{16}N_2$ exhibits high tetragonality (c/a = 1.1) by interstitial introduction of N atoms, leading to a high magnetocrystalline anisotropy constant ($K_1=1.0MJ/m^3$). In addition, Fe has a large amount of reserves on the Earth compared to other magnetic materials, leading to low cost of raw materials and manufacturing for industrial production. In this paper, we review the synthetic methods of metastable $a^{{\prime}{\prime}}-Fe_{16}N_2$ with film, powder and bulk form and discuss the approaches to enhance magnetocrystalline anisotropy of $a^{{\prime}{\prime}}-Fe_{16}N_2$. Future research prospects are also offered with patent trends observed thus far.

Energy Harvesting System according to Moisture Absorption of Textile and Efficient Coating Method as a Carbon Black (섬유 고분자의 수분 흡수에 따른 에너지 하베스팅 발전 소자 및 이를 위한 카본 블랙의 효율적인 코팅법)

  • Choi, Seungjin;Chae, Juwon;Lee, Sangoh;Lee, Jaewoong
    • Textile Coloration and Finishing
    • /
    • v.33 no.4
    • /
    • pp.280-287
    • /
    • 2021
  • Generating electricity by using water in many energy harvesting system is due to their simplicity, sustainability and eco-friendliness. Evaporation-driven moist-electric generators (EMEGs) are an emergent technology and show great potential for harvesting clean energy. In this study, we report a transpiration driven electro kinetic power generator (TEPG) that utilize capillary flow of water in an asymmetrically wetted cotton fabric coated with carbon black. When water droplets encounter this textile EMEG, the water flows spontaneously under capillary action without requiring an external power supply. First carbon black sonicated and dispersed well in three different solvent system such as dimethylformamide (DMF), sodiumdedecylbenzenesulfonate (SDBS-anionic surfactant) and cetyltrimethylammoniumbromide (CTAB-cationic surfactant). A knitted cotton/PET fabric was coated with carbon black by conventional pad method. Cotton/PET fabrics were immersed and stuttered well in these three different systems and then transferred to an autoclave at 120 ℃ for 15 minutes. Cotton/PET fabric treated with carbon black dispersed in DMF solvent generated maximum current up to 5 µA on a small piece of sample (2 µL/min of water can induce constant electric output for more than 286 hours). This study is high value for designing of electric generator to harvest clean energy constantly.

A rapid separation of Cs, Sr and Ba using gas pressurized extraction chromatography with inductively coupled plasma-mass spectrometry

  • Sojin Jeong;Jihye Kim;Hanul Cho;Hwakyeung Jeong;Byungman Kang;Sang Ho Lim
    • Analytical Science and Technology
    • /
    • v.37 no.2
    • /
    • pp.123-129
    • /
    • 2024
  • We present a rapid method for the determination of Cs, Sr, and Ba, heat generators found in highly active liquid wastes, by gas-pressurized extraction chromatography (GPEC) using a column containing a cation-exchange resin. GPEC is a microscale column chromatographic technique that uses a constant flow rate of solvent (0.07 mL/min) with pressurized nitrogen gas supplied through a valve. In particular, because this method uses a small sample volume (a few hundred microliters), it produces less chemical waste and allows for faster separation compared to traditional column chromatography. In this study, we evaluated the separation of Cs, Sr, and Ba using GPEC. The eluate from the column (GPEC or conventional column chromatography) was quantitatively analyzed using inductively coupled plasma-mass spectrometry to measure the column recovery and precision. The column reproducibility of the proposed GPEC system (RSDs of recoveries) ranged from 2.7 to 4.1 %, and the column recoveries for the three elements ranged from 72 to 98% when aqueous HCl was used as the eluent. The GPEC results are slightly different in efficiency and separation resolution compared to those of conventional column chromatography because of the differences in the eluent flow rate as well as the internal diameter and length of the column. However, the two methods had similar recoveries for Cs and Sr, and the precision of GPEC was improved by two-fold. Remarkably, the solvent volume required for GPEC analysis was five times lower than that of the conventional method, and the total analysis time was 11 times shorter.

Analysis of activated colloidal crud in advanced and modular reactor under pump coastdown with kinetic corrosion

  • Khurram Mehboob;Yahya A. Al-Zahrani
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4571-4584
    • /
    • 2022
  • The analysis of rapid flow transients in Reactor Coolant Pumps (RCP) is essential for a reactor safety study. An accurate and precise analysis of the RCP coastdown is necessary for the reactor design. The coastdown of RCP affects the coolant temperature and the colloidal crud in the primary coolant. A realistic and kinetic model has been used to investigate the behavior of activated colloidal crud in the primary coolant and steam generator that solves the pump speed analytically. The analytic solution of the non-dimensional flow rate has been determined by the energy ratio β. The kinetic energy of the coolant fluid and the kinetic energy stored in the rotating parts of a pump are two essential parameters in the form of β. Under normal operation, the pump's speed and moment of inertia are constant. However, in a coastdown situation, kinetic damping in the interval has been implemented. A dynamic model ACCP-SMART has been developed for System Integrated Modular and Advanced Reactor (SMART) to investigate the corrosion due to activated colloidal crud. The Fickian diffusion model has been implemented as the reference corrosion model for the constituent component of the primary loop of the SMART reactor. The activated colloidal crud activity in the primary coolant and steam generator of the SMART reactor has been studied for different equilibrium corrosion rates, linear increase in corrosion rate, and dynamic RCP coastdown situation energy ratio b. The coolant specific activity of SMART reactor equilibrium corrosion (4.0 mg s-1) has been found 9.63×10-3 µCi cm-3, 3.53×10-3 µC cm-3, 2.39×10-2 µC cm-3, 8.10×10-3 µC cm-3, 6.77× 10-3 µC cm-3, 4.95×10-4 µC cm-3, 1.19×10-3 µC cm-3, and 7.87×10-4 µC cm-3 for 24Na, 54Mn, 56Mn, 59Fe, 58Co, 60Co, 99Mo, and 51Cr which are 14.95%, 5.48%, 37.08%, 12.57%, 10.51%, 0.77%, 18.50%, and 0.12% respectively. For linear and exponential coastdown with a constant corrosion rate, the total coolant and steam generator activity approaches a higher saturation value than the normal values. The coolant and steam generator activity changes considerably with kinetic corrosion rate, equilibrium corrosion, growth of corrosion rate (ΔC/Δt), and RCP coastdown situations. The effect of the RCP coastdown on the specific activity of the steam generators is smeared by linearly rising corrosion rates, equilibrium corrosion, and rapid coasting down of the RCP. However, the time taken to reach the saturation activity is also influenced by the slope of corrosion rate, coastdown situation, equilibrium corrosion rate, and energy ratio β.

A Study on the Design of a Beta Ray Sensor for True Random Number Generators (진성난수 생성기를 위한 베타선 센서 설계에 관한 연구)

  • Kim, Young-Hee;Jin, HongZhou;Park, Kyunghwan;Kim, Jongbum;Ha, Pan-Bong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.6
    • /
    • pp.619-628
    • /
    • 2019
  • In this paper, we designed a beta ray sensor for a true random number generator. Instead of biasing the gate of the PMOS feedback transistor to a DC voltage, the current flowing through the PMOS feedback transistor is mirrored through a current bias circuit designed to be insensitive to PVT fluctuations, thereby minimizing fluctuations in the signal voltage of the CSA. In addition, by using the constant current supplied by the BGR (Bandgap Reference) circuit, the signal voltage is charged to the VCOM voltage level, thereby reducing the change in charge time to enable high-speed sensing. The beta ray sensor designed with 0.18㎛ CMOS process shows that the minimum signal voltage and maximum signal voltage of the CSA circuit which are resulted from corner simulation are 205mV and 303mV, respectively. and the minimum and maximum widths of the pulses generated by comparing the output signal through the pulse shaper with the threshold voltage (VTHR) voltage of the comparator, were 0.592㎲ and 1.247㎲, respectively. resulting in high-speed detection of 100kHz. Thus, it is designed to count up to 100 kilo pulses per second.

Development of Compact and Lightweight Broadband Power Amplifier with HMIC Technology (HMIC 기술을 적용한 소형화 경량화 광대역 전력증폭기 개발)

  • Byun, Kisik;Choi, Jin-Young;Park, Jae Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.695-700
    • /
    • 2018
  • This paper presents the development of compact and lightweight broadband power amplifier module using HMIC (Hybrid Microwave Integrated Circuit) technology that could be high-density integration for many non-packaged microwave components into the small area of a high dielectric constant printed circuit board, such as a ceramic substrate, also using the special design and fabrication schemes for the structure of minimized electromagnetic interference to obtain the homogeneous electrical performance at the wideband frequency. The results confirmed that the small signal gain has a gain flatness of ${\pm}1.5dB$ within the range of 32 to 36 dB. In addition, the output power satisfied more than 30 dBm. The noise figure was measured within 7 dB, and OIP3 (Output Third Order Intercept Point) was more than 39 dBm. The fabricated broadband power amplifier satisfied the target specification required to electrically drive the high power amplifiers of jamming generators for electronic warfare, so the actual applicability to the system was verified. Future studies will be aimed at designing other similar microwave power amplifiers in the future.

Effects of Contrast Improvement on High Voltage Rectification Type of X-ray Diagnostic Apparatus (X선 진단장치의 고압정류방식이 대조도 향상에 미치는 영향)

  • Lee, Hoo-Min;Yoon, Joon;Kim, Hyun-Ju
    • Journal of radiological science and technology
    • /
    • v.37 no.3
    • /
    • pp.187-193
    • /
    • 2014
  • The purpose of this study was to analyze the effect on the selectivity on of high-voltage rectification device that measured the performance of the grid, and the contrast improvement ability (K factor) by measuring the scattered radiation content of the transmitted X-rays. The scattered radiation generated when the X-ray flux comes from the diagnostic X-ray generator that passes through an object. Targeting four different rectifications of X-ray generators, the mean value of the tube voltage and the tube current was measured in order to maximize the accuracy of the generating power dose within the same exposure condition. Using fluorescence meter, the content of the scattered rays that are transmitted through the acrylic was measured depending on the grid usage. When grid is not used, the content of the scattered rays was the lowest (34.158%) with the single-phase rectifier, was increased with the inverter rectifier (37.043%) and the three-phase 24-peak rectification method (37.447%). The difference of the scattered radiation content of each device was significant from the lowest 0.404% to the highest 3.289% while using 8:1 grid, the content of the scattered ray was the lowest with the single content of the scattered ray was the lowest with the single-phase rectifier (18.258%), was increased with the rectifier (25.502%) and the 24-peaks rectification (24.217%). Furthermore, there was difference up to content 7.244% to the lowest content 1.285% within three-phase 24-peaks rectification, inverter rectifications, and single-phase rectifier depending on the selectivity of the grid. Drawn from the statistical analysis, there was a similar relationship between the contrast improvement factor and the K factor. As a result, the grid selectivity and the contrast were increased within the single-phase rectifier rather than the constant voltage rectifier.

A Study on the Utilization of Diagnostic Equipments and Patient Dose for Diagnostic Radiological Procedures in Korea (진단방사선영역에서 방사선장치의 이용실태 및 환자피폭선량에 관한 조사연구)

  • Kim Youhyun;Choi Jonghak;Kim Sungsoo;Lee Chanhyeup;Cho Pyongkon;Lee Youngbae;Kim Chelmin
    • Progress in Medical Physics
    • /
    • v.16 no.1
    • /
    • pp.10-15
    • /
    • 2005
  • IAEA's guidance levels have been provided for western people to the end. Guidance levels lower than the IAEA'S will be necessary in view of Korean people's proportions. Therefore, we need to develope the standard doses for Korean people. And we conducted a nationwide survey of patient dose from x-ray examinations in Korea. In this study, the 278 institutions were selected from Members Book of Korean Hospital Association. The valid response rate was approximately 57.9%. Doses were calculated from the questionnaires by NDD method. We obtained the results were as follows; 1) General radiographic equipments were distributed for 42.0%, fluoroscopic equipments 29.4%, dental equipments 13.2%, CT units 8.1 % and mamographic units 7.2%. 2) According to classification by rectification, three-phase equipments were 29.9%, inverter-type generators 29.5%, single-phase equipments 25.5%, constant voltage units 9.0% and unknown units 6.0%. 3) According to classification by receptor system, film-screen types were 46.8%, CR types 26.8%, DR types 17.7% and unknown types 8.9%. 4) The number of examinations were chest 49.2%, spine 16.8% and abdomen 12.7%. 5) Patient doses were head AP 3.44 mGy, abdomen AP 4.25 mGy and chest PA 0.39 mGy.

  • PDF

Design and Implementation of Transmission Scheduler for Terrestrial UHD Contents (지상파 UHD 콘텐츠 전송 스케줄러 설계 및 구현)

  • Paik, Jong-Ho;Seo, Minjae;Yu, Kyung-A
    • Journal of Broadcast Engineering
    • /
    • v.24 no.1
    • /
    • pp.118-131
    • /
    • 2019
  • In order to provide 8K UHD contents of terrestrial broadcasting with a large capacity, the terrestrial broadcasting system has various problems such as limited bandwidth and so on. To solve these problems, UHD contents transmission technology has been actively studied, and an 8K UHD broadcasting system using terrestrial broadcasting network and communication network has been proposed. The proposed technique is to solve the limited bandwidth problem of terrestrial broadcasting network by segmenting 8K UHD contents and transmitting them to heterogeneous networks through hierarchical separation. Through the terrestrial broadcasting network, the base layer corresponding to FHD and the additional enhancement layer data for 4K UHD are transmitted, and the additional enhancement layer data corresponding to 8K UHD is transmitted through the communication network. When 8K UHD contents are provided in such a way, user can receive up to 4K UHD broadcasting by terrestrial channels, and also can receive up to 8K UHD additional communication networks. However, in order to transmit the 4K UHD contents within the allocated bit rate of the domestic terrestrial UHD broadcasting, the compression rate is increased, so a certain level of image deterioration occurs inevitably. Due to the nature of UHD contents, video quality should be considered as a top priority over other factors, so that video quality should be guaranteed even within a limited bit rate. This requires packet scheduling of content generators in the broadcasting system. Since the multiplexer sends out the packets received from the content generator in order, it is very important to make the transmission time and the transmission rate of the process from the content generator to the multiplexer constant and accurate. Therefore, we propose a variable transmission scheduler between the content generator and the multiplexer to guarantee the image quality of a certain level of UHD contents in this paper.