• 제목/요약/키워드: Generators constant

검색결과 69건 처리시간 0.022초

Design and simulation of an RCN Controller to improve steady state behavior of a self-excited induction generator

  • Garg, Anjali;Sandhu, Kanwarjit Singh;Saini, Lalit Mohan
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제1권4호
    • /
    • pp.464-471
    • /
    • 2012
  • Self-excited induction generators (SEIG) are gaining importance as compared to conventional generators due to their capability toconvert wind energy into electrical energy for a wide range of variation in operating speed. The performance of such a generator depends upon the load, rotor speed and excitation capacitance. Therefore, depending upon the operating conditions, the output voltage and frequency of this machine goes on changing and this imposes a restriction on its usage. In order to maintain constant voltage and frequency, it need controllers, which make the circuit complicated and also increases the overall cost of power generation. This paper presents a simple controller to regulate the output voltage and frequency of SEIG for variation in its operating conditions due to any change in load, rotor speed and excitation capacitance (R, N, C) and their combination. The controller presented is simple in design, user friendly and is also less expensive, as the elements used in the controller are only resistors, inductors and capacitors. A block of SEIG for steady state operation is also modeled and presented in this paper. SEIG, Controller and other components are modeled and simulated using Matlab/Simulink.

Maximum Power Tracking Control for parallel-operated DFIG Based on Fuzzy-PID Controller

  • Gao, Yang;Ai, Qian
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권6호
    • /
    • pp.2268-2277
    • /
    • 2017
  • As constantly increasing wind power penetrates power grid, wind power plants (WPPs) are exerting a direct influence on the traditional power system. Most of WPPs are using variable speed constant frequency (VSCF) wind turbines equipped with doubly fed induction generators (DFIGs) due to their high efficiency over other wind turbine generators (WTGs). Therefore, the analysis of DFIG has attracted considerable attention. Precisely measuring optimum reference speed is basis of utilized maximum wind power in electric power generation. If the measurement of wind speed can be easily taken, the reference of rotation speed can be easily calculated by known system's parameters. However, considering the varying wind speed at different locations of blade, the turbulence and tower shadow also increase the difficulty of its measurement. The aim of this study is to design fuzzy controllers to replace the wind speedometer to track the optimum generator speed based on the errors of generator output power and rotation speed in varying wind speed. Besides, this paper proposes the fuzzy adaptive PID control to replace traditional PID control under rated wind speed in variable-pitch wind turbine, which can detect and analyze important aspects, such as unforeseeable conditions, parameters delay and interference in the control process, and conducts online optimal adjustment of PID parameters to fulfill the requirement of variable pitch control system.

나선형 자장압축발전기의 코일설계 최적화 (Optimization of Coil Design for Helical Magneto-Cumulative Generators)

  • 국정현;이흥호
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권8호
    • /
    • pp.477-487
    • /
    • 2004
  • Helical magneto-cumulative generators(MCGs) are devices which convert explosive energy into electromagnetic energy. The electromagnetic energy supplied from an external circuit is amplified by an explosively driven metal conductor mounted at the center of a helical coil compressing magnetic flux between the conductor and the coil. To optimize the coil design, output properties of small-size helical MCGs were measured while varying design parameters; the number of coil sections, length of the sections, pitch in the sections, and type of copper wire. Dimensions of the coil were kept constant, 50 mm in diameter and 200 mm in length. The coil was fabricated by using enamel-coated copper wire of 1 mm in diameter. The highest energy amplification ratio and figure of merit were 52.5 and 0.81, respectively. from an helical MCG with initial inductance of 63.7 $\mu$H at initial energy of 0.152 kJ Based on the experimental and calculated results, empirical formulas capable of optimizing coil designs were derived. By using these formulas, pitch in each coil section can be obtained at an arbitrary inductive load for high energy amplification ratio and figure of merit.

A Solid State Controller for Self-Excited Induction Generator for Voltage Regulation, Harmonic Compensation and Load Balancing

  • Singh Bhim;Murthy S. S.;Gupta Sushma
    • Journal of Power Electronics
    • /
    • 제5권2호
    • /
    • pp.109-119
    • /
    • 2005
  • This paper deals with the performance analysis of static compensator (STATCOM) based voltage regulator for self­excited induction generators (SEIGs) supplying balanced/unbalanced and linear/ non-linear loads. In practice, most of the loads are linear. But the presence of non-linear loads in some applications injects harmonics into the generating system. Because an SEIG is a weak isolated system, these harmonics have a great effect on its performance. Additionally, SEIG's offer poor voltage regulation and require an adjustable reactive power source to maintain a constant terminal voltage under a varying load. A three-phase insulated gate bipolar transistor (IGBT) based current controlled voltage source inverter (CC- VSI) known as STATCOM is used for harmonic elimination. It also provides the required reactive power an SEIG needs to maintain a constant terminal voltage under varying loads. A dynamic model of an SEIG-STATCOM system with the ability to simulate varying loads has been developed using a stationary d-q axes reference frame. This enables us to predict the behavior of the system under transient conditions. The simulated results show that by using a STATCOM based voltage regulator the SEIG terminal voltage can be maintained constant and free from harmonics under linear/non linear and balanced/unbalanced loads.

분산전원의 구성 및 출력 제어 방법에 따른 Droop 계수 설정 방법 (A Method to Determine the Droop Constant of DGs Considering the Configuration and Active Power Control Mode)

  • 안선주;박진우;정일엽;문승일
    • 전기학회논문지
    • /
    • 제57권11호
    • /
    • pp.1954-1961
    • /
    • 2008
  • Microgrid usually consists of a cluster of distributed generators(DGs), energy storage systems and loads, and can operate in the grid-connected mode and the islanded mode. This paper presents detailed descriptions of two different options for controlling the active power of DGs in the microgrid. One is regulating the power injected by the unit to a desired amount(Unit output power control) and the other is to regulate the flow of active power in the feeder where the unit is installed to a constant(Feeder flow control). Frequency-droop characteristics are used to achieve good active power sharing when the microgrid operates in the islanded mode. The change in the frequency and the active power output of DGs are investigated according to the control mode and the configuration of DGs when the microgrid is disconnected from the main grid. From the analysis, this paper proposes a method to determine the droop constant of DGs operating in the feeder flow control mode. Simulation results using the PSCAD/EMTDC are presented to validate the approach, which shows good performance as opposed to the conventional one.

THEORETICAL ANALYSIS FOR STUDYING THE FRETTING WEAR PROBLEM OF STEAM GENERATOR TUBES IN A NUCLEAR POWER PLANT

  • LEE CROON YEOL;CHAI YOUNG SUCK;BAE JOON WOO
    • Nuclear Engineering and Technology
    • /
    • 제37권2호
    • /
    • pp.201-206
    • /
    • 2005
  • Fretting, which is a special type of wear, is defined as small amplitude relative motion along the contacting interface between two materials. The structural integrity of steam generators in nuclear power plants is very much dependent upon the fretting wear characteristics of Inconel 690 U-tubes. In this study, a finite element model that can simulate fretting wear on the secondary side of the steam generator was developed and used for a quantitative investigation of the fretting wear phenomenon. Finite element modeling of elastic contact wear problems was performed to demonstrate the feasibility of applying the finite element method to fretting wear problems. The elastic beam problem, with existing solutions, is treated as a numerical example. By introducing a control parameter s, which scaled up the wear constant and scaled down the cycle numbers, the algorithm was shown to greatly reduce the time required for the analysis. The work rate model was adopted in the wear model. In the three-dimensional finite element analysis, a quarterly symmetric model was used to simulate cross tubes contacting at right angles. The wear constant of Inconel 690 in the work rate model was taken as $K=26.7{\times}10^{-15}\;Pa^{-1}$ from experimental data obtained using a fretting wear test rig with a piezoelectric actuator. The analyses revealed donut-shaped wear along the contacting boundary, which is a typical feature of fretting wear.

SMPS 용 PWM IC 설계 (The study of PWM IC design for SMPS)

  • 최인철;임동주;조한주;구용서
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2004년도 하계종합학술대회 논문집(2)
    • /
    • pp.557-560
    • /
    • 2004
  • In this study, we design the one-chip PWM IC for SMPS (Switching Mode Power Supply) application. We determine the IC spec. and simulated each block of PWM IC (Reference, Error amp., Comparator, Oscillator) with Smart Spice (SILVACO Circuit Simulation Tool). Reference circuits generate constant voltage(5V) in the various of power supply and temperature condition. Error amp. is designed with large DC gain (${\simeq}65dB$), unity frequency (${\simeq}190kHz$) and large PM($75^{\circ}$).Saw tooth generators operate with 20K oscillation frequency (external resistor, capacitor).

  • PDF

Battery Energy Storage Based Voltage and Frequency Controller for Isolated Pico Hydro Systems

  • Singh, Bhim;Rajagopal, V.
    • Journal of Power Electronics
    • /
    • 제9권6호
    • /
    • pp.874-883
    • /
    • 2009
  • This paper deals with an integrated voltage and frequency (VF) controller for isolated asynchronous generators (IAG) driven by a constant power pico-hydro uncontrolled turbine feeding three-phase four-wire loads. The proposed VF controller is used to control the frequency and voltage of an IAG with load leveling. Such a VF controller is also known as an integrated electronic load controller (IELC) which is realized using an isolated star/polygon transformer with a voltage source converter (VSC) and a battery at its DC bus. The proposed generating system with a VFC is modeled and simulated in MATLAB along with Simulink and Simpower system (SPS) toolboxes. The simulated results are presented to demonstrate the performance of an isolated asynchronous generator feeding three-phase four-wire loads with neutral current compensation.

크로스 커패시턴스를 이용한 발전기 고정자 권선 절연물 흡습 측정 센서 (Water Absorption Sensor of Generator Stator Bar Insulation using Cross Capacitance)

  • 배용채;김희수;이두영;이욱륜;이래덕
    • 전기학회논문지
    • /
    • 제60권10호
    • /
    • pp.1972-1977
    • /
    • 2011
  • The mechanical integrity of generator stator windings is one of the critical point because the electric power is generated and conducted to power system through these windings. To cool down the heat emitted from generator winding during its operation, a majority of generators use de-mineralized water characterized by high cooling efficiency. Contrary to such the excellent cooling efficiency, however, the damaged bar insulations attributed to the absorption of cooling water in the generator stator winding lead to highly time- and cost consuming efforts as well as to service deterioration due to unexpected forced outage of generator. It is described that the new design of water absorption sensor using cross capacitance for generator in power plant in order to increase the reliability of water absorption diagnostics for generator stator bar insulation.

화력발전소 기동시 터빈 바이패스 시스템과 터빈 제어에 관한 고찰 (A Study on Turbine Control and Turbine Bypass Control during Startup of Thermal Power Plants)

  • 최인규;박두용
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1664_1665
    • /
    • 2009
  • Many years ago, most of thermal power plants built in this country were of subcritical pressure, of medium or small size, of constant pressure operations and of drum type steam generators with circulation type boilers. But, nowadays almost all of them were of high efficiency, of supercritical pressure, of big capacity, of sliding pressure operations, and of once through type steam generator. It has such advantage as the reduction of startup duration, but it control system and operation method are very complicated. It has a big difference in operation method of turbine and boiler. The feedforward control needs to be introduced to prevent such problems as thermal shock during the transit from normal operation into bypass operation. This paper introduces the turbine control and turbine bypass control during startup of thermal power plants.

  • PDF