• 제목/요약/키워드: Generator cooling

검색결과 190건 처리시간 0.027초

바이오매스 합성가스 적용을 위한 LPG 엔진발전기 개조 및 성능평가 (Modification of an LPG Engine Generator for Biomass Syngas Application)

  • 엘리에젤 하비네자;홍성구
    • 한국농공학회논문집
    • /
    • 제64권5호
    • /
    • pp.9-16
    • /
    • 2022
  • Syngas, also known as synthesis gas, synthetic gas, or producer gas, is a combustible gas mixture generated when organic material (biomass) is heated in a gasifier with a limited airflow at a high temperature and elevated pressure. The present research was aimed at modifying the existing LPG engine generator for fully operated syngas. During this study, the designed gasifier-powered woodchip biomass was used for syngas production to generate power. A 6.0 kW LPG engine generator was modified and tested for operation on syngas. In the experiments, syngas and LPG fuels were tested as test fuels. For syngas production, 3 kg of dry woodchips were fed and burnt into the designed downdraft gasifier. The gasifier was connected to a blower coupled with a slider to help the air supply and control the ignition. The convection cooling system was connected to the syngas flow pipe for cooling the hot produce gas and filtering the impurities. For engine modification, a customized T-shaped flexible air/fuel mixture control device was designed for adjusting the correct stoichiometric air-fuel ratio ranging between 1:1.1 and 1.3 to match the combustion needs of the engine. The composition of produced syngas was analyzed using a gas analyzer and its composition was; 13~15 %, 10.2~13 %, 4.1~4.5 %, and 11.9~14.6 % for CO, H2, CH4, and CO2 respectively with a heating value range of 4.12~5.01 MJ/Nm3. The maximum peak power output generated from syngas and LPG was recorded using a clamp-on power meter and found to be 3,689 watts and 5,001 watts, respectively. The results found from the experiment show that the LPG engine generator operated on syngas can be adopted with a de-ration rate of 73.78 % compared to its regular operating fuel.

냉각시스템에 의한 태양광 발전의 효율 개선 (Solar Photovoltaic According to Installation of Cooling System)

  • 염성배;최홍규;최영준;홍성구;김태훈
    • 조명전기설비학회논문지
    • /
    • 제23권5호
    • /
    • pp.66-71
    • /
    • 2009
  • 태양광 발전은 일사량이 높을수록 발전량이 증가된다. 그러나 일사량이 높아짐에 따라 셀의 온도도 같이 증가해 발전 효율은 감소하게 된다. 냉각시스템의 설치는 이러한 문제점을 해결하기 위한 적절한 방법이 될 수 있으나 냉각시스템 설치 후 태양광 발전량의 증가량, 냉각시스템의 설치비용, 냉각시스템의 유지 보수비용 등 실용화에 필요한 내용은 논의되고 있지 않다. 따라서 본 논문에서는 냉각시스템의 효과 및 상용화 가능성에 대해 기술하였다. 실험결과 냉각시스템 설치 후, 연평균 약 5.76[%]의 발전량 증가를 기대할 수 있다.

온수를 이용한 열전발전기에서 유량변화에 따른 발전 특성 (Characteristic of Electric Generation for the Water Flow Rate in Thermoelctric Generator Using Hot Water)

  • 우병철;이희웅;서창민
    • 대한기계학회논문집B
    • /
    • 제26권10호
    • /
    • pp.1333-1340
    • /
    • 2002
  • The objective of this study is to develop a thermoelectric generation system which converts unused energy from close-at-hand sources such as garbage incineration heat and industrial exhaust etc. into electricity. This paper presents applicability of a commercially available thermoelectric generator f3r waster heat recovery. The test facility consists of water heater, pump, thermoelectric module and aluminium tubes and hot and cold water is used as heat source and sink fluids. It is shown that the three components of thermoelectric research exist in manufacturing a thermoelectric generator. The first component is fabrication of thermoelectric materials, the second is manufacturing of thermoelectric generator with 32 thermoelectric modules. The last one is characteristic measuring of thermoelectric generator with 32 thermoelectric modules of two types, cooling and power purpose. It was found that the rate of cold and hot water is 25 and 37 liter per minute and the maximum power of thermoelectric generator is 28Watts and its efficiency is 1.04%.

IR 카메라 기반의 풍력발전용 고장검출 시스템 개발 (Development of IR Camera based Fault Detection System for Wind Turbine Generator)

  • 김세윤;김성호
    • 한국지능시스템학회논문지
    • /
    • 제22권6호
    • /
    • pp.780-785
    • /
    • 2012
  • 최근 풍력발전은 전 세계적으로 전기의 생산을 위해 사용되는 신재생 에너지원 중 가장 빨리 성장하고 있는 분야이다. 일반적으로 풍력발전 시스템은 설치 후 약 20년 동안 사용될 수 있도록 설계되며 따라서 장기간 운전할 경우, 풍력 발전기에서의 고장은 필연적으로 발생하게 된다. 특히 풍력발전 시스템의 너셀 내부에는 로터샤프트, 기어박스 및 발전기 등이 설치되며 이들 요소의 정상적인 동작을 보장하기 위한 각종 냉각 시스템이 설치된다. 만일 이들 냉각 시스템에 고장이 발생된다면 전체 풍력발전시스템의 정상적인 동작을 보장하는 것이 불가능하다. 이에 본 연구에서는 풍력발전 시스템 너셀 내부에 설치되는 각종 냉각장치의 고장을 미연에 방지할 수 있게 하는 IR 카메라 기반의 풍력발전용 고장검출 시스템을 제안하고 실제 시스템의 구현을 통해 제안된 기법의 유용성을 확인하고자 한다.

냉각시스템 설치에 따른 태양광 발전 (Solar photovoltaic according to installation of cooling system)

  • 홍성구;최홍규;유해출;이찬재;한상권;김태훈
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2008년도 추계학술대회 논문집
    • /
    • pp.189-192
    • /
    • 2008
  • 태양광 발전은 일사량이 높을수록 발전량이 증가된다. 그러나 일사량이 높아짐에 따라 셀의 온도도 같이 증가해 발전 효율은 감소하게 된다. 냉각시스템의 설치는 이러한 문제점을 해결하기 위한 적절한 방법이 될 수 있으나 냉각시스템 설치 후 태양광 발전량의 증가량, 냉각시스템의 설치비용, 냉각시스템의 유지 보수비용 등 실용화에 필요한 내용은 논의되고 있지 않다. 따라서 본 논문에서는 냉각시스템의 효과 및 상용화 가능성에 대해 기술하였다.

  • PDF

고온초전도 응용기기용 과냉질소 냉각시스템의 냉각특성 (Characteristics of Sub-cooled Nitrogen Cryogenic System for Applied High-Tc Superconducting Devices)

  • 강형구;김형진;배덕권;안민철;윤용수;장호명;고태국
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제6권1호
    • /
    • pp.38-42
    • /
    • 2004
  • The cryogenic system for 6.6 kV/200 A inductive superconducting fault current limiter (SFCL) was developed at Yonsei university in 2003. The sub-cooled nitrogen cryogenic system could be applied to not only SFCL but also many other applied high-Tc superconducting (HTS) devices like superconducting motor, superconducting generator and superconducting magnetic energy storage (SMES). Generally, the cooling capacity of GM-cryocooler depends on the load temperature. Therefore it is necessary to perform the cooling capacity test at no load condition to calculate the exact cooling power and heat load of cryogenic system. In this research, the cooling capacity test of GM-cryocooler was executed and the heat load of developed cryogenic system was calculated. The long run operation test results of sub-cooled nitrogen cryogenic system were successful in pressure and temperature condition. Moreover, the design and fabrication method of cryogenic system were introduced and the test results were described.

Numerical Study on the Natural Circulation Characteristics in an Integral Type Marine Reactor for Inclined Conditions

  • Kim, Tae-Wan;Park, Goon-Cherl;Kim, Jae-Hak
    • Nuclear Engineering and Technology
    • /
    • 제33권4호
    • /
    • pp.397-408
    • /
    • 2001
  • A marine reactor shows very different thermal-hydraulic characteristics compared to a land- based reactor. Especially, study on the variation of flow field due to ship motions such as inclination, heaving and rolling is essential since the flow variation has great influence on the reactor cooling capability. In this study, the natural circulation characteristics of integral type marine reactor with modular steam generators were analyzed using computational fluid dynamics code, CFX-4, for inclined conditions. The numerical analyses are performed using the results of natural circulation experiments for integral reactor which are already conducted at Seoul National University. From the results, it was found that the flow rate in the ascending steam generator cassettes increases due to buoyancy effect. Due to this flow variation, temperature difference occurs at the outlets of the each steam generator cassettes. which is mitigated through downcomer by thermal mixing. Also, around the upper pressure header the flow from descending hot leg goes up to the ascending steam generator cassettes due to large natural circulation driving force in ascending steam generator cassettes. From this result, the increase of How rate in the ascending steam generator cassettes could be understood qualitatively.

  • PDF

반도체 웨이퍼의 오존 수(水) 세정을 위한 고농도 오존발생장치 특성 연구 (A Study on the Characteristics of the High Concentration Ozone Generator for the Semiconductor Wafer Cleaning with the Ozone Dissolved De-ionized Water)

  • 손영수;함상용;문세호
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제52권12호
    • /
    • pp.579-585
    • /
    • 2003
  • Recently the utilization of the ozone dissolved de-ionized water(DI-O3 water) in semiconductor wet cleaning process to replace the conventional RCA methods has been studied. In this paper, we propose the water-electrode type ozone generator which has the ozone gas characteristics of the high concentration and high purity to produce the high concentration DI-O3 water for the silicon wafer surface cleaning process. The ozone generator has the dual dielectric tube structure of silent discharge type and the water is both used to electrode and cooling water. We investigate the performance of the proposed ozone generator which has the design goal of the concentration of 7[wt%] and ozone generation quantity of 6[g/hr] at flow rate of 1[$\ell$/min). The experiment results show that the water electrode type ozone generator has the characteristics of 8.48[wt%] of concentration, 8.08[g/hr] of generation quantity and 76.2[g/kWh] of yield and it's possible to use the proposed ozone generator for the DI-O3 water cleaning process of silicon wafer surface.