• Title/Summary/Keyword: Generator

Search Result 8,729, Processing Time 0.043 seconds

Stand-alone Real-time Healthcare Monitoring Driven by Integration of Both Triboelectric and Electro-magnetic Effects (실시간 헬스케어 모니터링의 독립 구동을 위한 접촉대전 발전과 전자기 발전 원리의 융합)

  • Cho, Sumin;Joung, Yoonsu;Kim, Hyeonsu;Park, Minseok;Lee, Donghan;Kam, Dongik;Jang, Sunmin;Ra, Yoonsang;Cha, Kyoung Je;Kim, Hyung Woo;Seo, Kyoung Duck;Choi, Dongwhi
    • Korean Chemical Engineering Research
    • /
    • v.60 no.1
    • /
    • pp.86-92
    • /
    • 2022
  • Recently, the bio-healthcare market is enlarging worldwide due to various reasons such as the COVID-19 pandemic. Among them, biometric measurement and analysis technology are expected to bring about future technological innovation and socio-economic ripple effect. Existing systems require a large-capacity battery to drive signal processing, wireless transmission part, and an operating system in the process. However, due to the limitation of the battery capacity, it causes a spatio-temporal limitation on the use of the device. This limitation can act as a cause for the disconnection of data required for the user's health care monitoring, so it is one of the major obstacles of the health care device. In this study, we report the concept of a standalone healthcare monitoring module, which is based on both triboelectric effects and electromagnetic effects, by converting biomechanical energy into suitable electric energy. The proposed system can be operated independently without an external power source. In particular, the wireless foot pressure measurement monitoring system, which is rationally designed triboelectric sensor (TES), can recognize the user's walking habits through foot pressure measurement. By applying the triboelectric effects to the contact-separation behavior that occurs during walking, an effective foot pressure sensor was made, the performance of the sensor was verified through an electrical output signal according to the pressure, and its dynamic behavior is measured through a signal processing circuit using a capacitor. In addition, the biomechanical energy dissipated during walking is harvested as electrical energy by using the electromagnetic induction effect to be used as a power source for wireless transmission and signal processing. Therefore, the proposed system has a great potential to reduce the inconvenience of charging caused by limited battery capacity and to overcome the problem of data disconnection.

NOx Reduction Characteristics of Ship Power Generator Engine SCR Catalysts according to Cell Density Difference (선박 발전기관용 SCR 촉매의 셀 밀도차에 따른 NOx 저감 특성)

  • Kyung-Sun Lim;Myeong-Hwan Im
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.7
    • /
    • pp.1209-1215
    • /
    • 2022
  • The selective catalytic reduction (SCR) is known as a very efficient method to reduce nitrogen oxides (NOx) and the catalyst performs reduction from nitrogen oxides (NOx) to nitrogen (N2) and water vapor (H2O). The catalyst, which is one of the factors determining the performance of the nitrogen oxide (NOx) ruduction method, is known to increase catalyst efficiency as cell density increases. In this study, the reduction characteristics of nitrogen oxides (NOx) under various engine loads investigated. A 100CPSI(60Cell) catalysts was studied through a laboratory-sized simulating device that can simulate the exhaust gas conditions from the power generation engine installed in the training ship SEGERO. The effect of 100CPSI(60Cell) cell density was compared with that of 25.8CPSI(30Cell) cell density that already had NOx reduction data from the SCR manufacturing. The experimental catalysts were honeycomb type and its compositions and materials of V2O5-WO3-TiO2 were retained, with only change on cell density. As a result, the NOx concentration reduction rate from 100CPSI(60Cell) catalyst was 88.5%, and IMO specific NOx emission was 0.99g/kwh satisfying the IMO Tier III NOx emission requirement. The NOx concentration reduction rate from 25.8CPSI(30Cell) was 78%, and IMO specific NOx emission was 2.00g/kwh. Comparing the NOx concentration reduction rate and emission of 100CPSI(60Cell) and 25.8CPSI(30Cell) catalysts, notably, the NOx concentration reduction rate of 100CPSI(60Cell) catalyst was 10.5% higher and its IMO specific NOx emission was about twice less than that of the 25.8CPSI(30Cell) catalysts. Therefore, an efficient NOx reduction effect can be expected by increasing the cell density of catalysts. In other words, effects to production cost reduction, efficient arrangement of engine room and cargo space can be estimated from the reduced catalyst volume.

Evaluation and Verification of the Attenuation Rate of Lead Sheets by Tube Voltage for Reference to Radiation Shielding Facilities (방사선 방어시설 구축 시 활용 가능한 관전압별 납 시트 차폐율 성능평가 및 실측 검증)

  • Ki-Yoon Lee;Kyung-Hwan Jung;Dong-Hee Han;Jang-Oh Kim;Man-Seok Han;Jong-Won Gil;Cheol-Ha Baek
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.4
    • /
    • pp.489-495
    • /
    • 2023
  • Radiation shielding facilities are constructed in locations where diagnostic radiation generators are installed, with the aim of preventing exposure for patients and radiation workers. The purpose of this study is seek to compare and validate the trend of attenuation thickness of lead, the primary material in these radiation shielding facilities, at different maximum tube voltages by Monte Carlo simulations and measurement. We employed the Monte Carlo N-Particle 6 simulation code. Within this simulation, we set a lead shielding arrangement, where the distance between the source and the lead sheet was set at 100 cm and the field of view was set at 10 × 10 cm2. Additionally, we varied the tube voltages to encompass 80, 100, 120, and 140 kVp. We calculated energy spectra for each respective tube voltage and applied them in the simulations. Lead thicknesses corresponding to attenuation rates of 50, 70, 90, and 95% were determined for tube voltages of 80, 100, 120, and 140 kVp. For 80 kVp, the calculated thicknesses for these attenuation rates were 0.03, 0.08, 0.21, and 0.33 mm, respectively. For 100 kVp, the values were 0.05, 0.12, 0.30, and 0.50 mm. Similarly, for 120 kVp, they were 0.06, 0.14, 0.38, and 0.56 mm. Lastly, at 140 kVp, the corresponding thicknesses were 0.08, 0.16, 0.42, and 0.61 mm. Measurements were conducted to validate the calculated lead thicknesses. The radiation generator employed was the GE Healthcare Discovery XR 656, and the dosimeter used was the IBA MagicMax. The experimental results showed that at 80 kVp, the attenuation rates for different thicknesses were 43.56, 70.33, 89.85, and 93.05%, respectively. Similarly, at 100 kVp, the rates were 52.49, 72.26, 86.31, and 92.17%. For 120 kVp, the attenuation rates were 48.26, 71.18, 87.30, and 91.56%. Lastly, at 140 kVp, they were measured 50.45, 68.75, 89.95, and 91.65%. Upon comparing the simulation and experimental results, it was confirmed that the differences between the two values were within an average of approximately 3%. These research findings serve to validate the reliability of Monte Carlo simulations and could be employed as fundamental data for future radiation shielding facility construction.

Method of Reducing Separation Membrane Fouling Using Microbubbles (마이크로버블을 이용한 분리막 파울링 저감방법)

  • Kyung-Hwan Ku;Younghee Kim
    • Clean Technology
    • /
    • v.29 no.1
    • /
    • pp.31-38
    • /
    • 2023
  • Due to water shortages caused by water pollution and climate change, total organic carbon (TOC) standards have been implemented for wastewater discharged from public sewage treatment facilities. Furthermore, there is a growing interest and body of research pertaining to the reuse of sewage treatment water as a secure alternative water resource. The membrane bio-reactor (MBR) method is commonly used for advanced wastewater treatment because it can remove organic and inorganic ions and it does not require or emit any chemicals. However, the MBR process uses a separation membrane (MF), which requires frequent film cleaning due to fouling caused by a high concentration of mixed liquor suspended solid (MLSS). In this study, process improvement and microbubble cleaning efficiency were evaluated to improve the differential pressure, water flow, and MF fouling, which are the biggest disadvantages of operating the MF. The existing MBR method was improved by installing a precipitation tank between the air tank and the MBR tank in which raw water was introduced. Microbubbles were injected into a separation membrane tank into which the supernatant water from the precipitation tank was introduced. The microbubble generator was operated with a 15 day on, 15 day off cycle for 5 months to collect discharged water samples (4L) and measure TOC. As the supernatant water from the precipitation tank flowed into the separation membrane tank, about 95% of the supernatant water MLSS was removed so the MF fouling from biological contamination was prevented. Due to the application of microbubbles to supernatant water from the precipitation tank, the differential pressure of the separation membrane tank decreased by 1.6 to 2.3 times and the water flow increased by 1.4 times. Applying microbubbles increased the TOC removal rate by more than 58%. This study showed that separately operating the air tank and the separation membrane tank can reduce fouling, and suggested that applying additional microbubbles could improve the differential pressure, water flow, and fouling to provide a more efficient advanced treatment method.

Optimization and Stabilization of Automated Synthesis Systems for Reduced 68Ga-PSMA-11 Synthesis Time (68Ga-PSMA-11 합성 시간 단축을 위한 자동합성장치의 최적화 및 안정성 연구)

  • Ji hoon KANG;Sang Min SHIN;Young Si PARK;Hea Ji KIM;Hwa Youn JANG
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.56 no.2
    • /
    • pp.147-155
    • /
    • 2024
  • Gallium-68-prostate-specific membrane antigen-11 (68Ga-PSMA-11) is a positron emission tomography radiopharmaceutical that labels a Glu-urea-Lys-based ligand with 68Ga, binding specifically to the PSMA. It is used widely for imaging recurrent prostate cancer and metastases. On the other hand, the preparation and quality control testing of 68Ga-PSMA-11 in medical institutions takes over 60 minutes, limiting the daily capacity of 68Ge/68Ga generators. While the generator provides 1,110 MBq (30 mCi) nominally, its activity decreases over time, and the labeling yield declines irregularly. Consequently, additional preparations are needed, increasing radiation exposure for medical technicians, prolonging patient wait times, and necessitating production schedule adjustments. This study aimed to reduce the 68Ga-PSMA-11 preparation time and optimize the automated synthesis system. By shortening the reaction time between 68Ga and the PSMA-11 precursor and adjusting the number of purification steps, a faster and more cost-effective method was tested while maintaining quality. The final synthesis time was reduced from 30 to 20 minutes, meeting the standards for the HEPES content, residual solvent EtOH content, and radiochemical purity. This optimized procedure minimizes radiation exposure for medical technicians, reduces patient wait times, and maintains consistent production schedules, making it suitable for clinical application.

Research on Generative AI for Korean Multi-Modal Montage App (한국형 멀티모달 몽타주 앱을 위한 생성형 AI 연구)

  • Lim, Jeounghyun;Cha, Kyung-Ae;Koh, Jaepil;Hong, Won-Kee
    • Journal of Service Research and Studies
    • /
    • v.14 no.1
    • /
    • pp.13-26
    • /
    • 2024
  • Multi-modal generation is the process of generating results based on a variety of information, such as text, images, and audio. With the rapid development of AI technology, there is a growing number of multi-modal based systems that synthesize different types of data to produce results. In this paper, we present an AI system that uses speech and text recognition to describe a person and generate a montage image. While the existing montage generation technology is based on the appearance of Westerners, the montage generation system developed in this paper learns a model based on Korean facial features. Therefore, it is possible to create more accurate and effective Korean montage images based on multi-modal voice and text specific to Korean. Since the developed montage generation app can be utilized as a draft montage, it can dramatically reduce the manual labor of existing montage production personnel. For this purpose, we utilized persona-based virtual person montage data provided by the AI-Hub of the National Information Society Agency. AI-Hub is an AI integration platform aimed at providing a one-stop service by building artificial intelligence learning data necessary for the development of AI technology and services. The image generation system was implemented using VQGAN, a deep learning model used to generate high-resolution images, and the KoDALLE model, a Korean-based image generation model. It can be confirmed that the learned AI model creates a montage image of a face that is very similar to what was described using voice and text. To verify the practicality of the developed montage generation app, 10 testers used it and more than 70% responded that they were satisfied. The montage generator can be used in various fields, such as criminal detection, to describe and image facial features.

In Vitro Properties and Biodistribution of Tc-99m and Re-188 Labeled Monoclonal Antibody CEA79.4 (Re-188과 Tc-99m 표지 단일클론항체 CEA79.4의 생체외 특성과 생체내 분포)

  • Hong, Mee-Kyoung;Jeong, Jae-Min;Yeo, Jeong-Seok;Kim, Kyung-Min;Chang, Young-Soo;Lee, Yong-Jin;Lee, Dong-Soo;Chung, June-Key;Lee, Myung-Chul;Lee, Seung-Jin
    • The Korean Journal of Nuclear Medicine
    • /
    • v.32 no.6
    • /
    • pp.516-524
    • /
    • 1998
  • Purpose: Radiolabeled CEA79.4 antibody has a possibility to be used in radioimmunoscintigraphy or radioimmunotherapy of cancer. We investigated the in vitro properties and biodistribution of CEA79.4 antibody labeled with Re-188 or Tc-99m. Materials and Methods: CEA79.4 was reduced by 2-mercaptoethanol to produce-SH residue, and was labeled with Re-188 or Tc-99m. For direct labeling of Tc-99m, methylene-diphosphonate was used as transchelating agent. CEA79.4 in 50 mM Acetate Buffered Saline (ABS, pH 5.3) was labeled with Re-188, using stannous tartrate as reducing agent. In order to measure immunoreactivity and the affinity constant of radiolabeled antibody, cell binding assay and Scatchard analysis using human colon cancer cells SNU-C4, were performed. Biodistribution study of labeled CEA79.4 was carried out at 1, 14 and 24 hr in ICR mice. Results: Labeling efficiencies of Tc-99m and Re-188 labeled antibodies were $92.4{\pm}5.9%$ and $84.7{\pm}4.6%$, respectively, In vitro stability of Tc-99m-CEA79.4 in human serum was higher than Re-188-CEA79.4. Immunoreactivity and affinity constant of Tc-99m-CEA79.4 were 59.2% and $6.59{\times}10^9\;M^{-1}$, respectively, while those of Re-188-CEA79.4 were 41.6% and $4.2{\times}10^9\;M^{-1}$, respectively. After 24 hr of administrations of Re-188 and Tc-99m labeled antibody, the remaining antibodies in blood were 6.32 and 9.35% ID/g respectively. The biodistribution of each labeled antibody in other organs was similar because they did not accumulate in non-targeted organs. Conclusion: In vitro properties and biodistribution of Re-188-CEA79.4 were similar to those of Tc-99m-CEA79.4. It appears that Re-188-CEA79.4 can be used as a suitable agent for radioimmunotheraphy.

  • PDF

The Evaluation of Factors Which Influence Binding Efficiency of Modified in Vivo Erythrocyte Labeling Technique (변형 체내 표지법에 의한 적혈구 표지시 결합효율에 영향을 미치는 인자 평가)

  • Seo, Han-Kyung;Kim, Min-Woo;Lim, Seok-Tae;Sohn, Myung-Hee
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.4
    • /
    • pp.300-305
    • /
    • 2004
  • Purpose: We underwent this study to evaluate the factors which influence labeling efficiency when modified in vivo erythrocyte labeling technique was used. Materials and methods: Thirty healthy volunteers (M:F=19:11, age:$25{\pm}2$ yrs) were enrolled in this study. Totally, two hundred ten samples were obtained from them. The 1 mg of stannous pyrophosphate was injected intravenously at the beginning of labeling. After suitable tinning time (5 min, 20 min, 35 min) passed by, blood (5 mL, 3 mL or 1 mL) was withdrawn into 10 mL syringe previously containing Tc-99m (740 MBq) and anticoagulant (heparin, ACD or CPDA) through 19-gauged scalp needle. The generator ingrowth time of Tc-99m was within 24 hrs in each case. The blood samples were placed on rotating invertor during incubation (10 min, 25 min, 40 min) but some of them were not. Immediately after the conclusion of incubation, the labeled blood specimens to analyze were centrifuged. and then %Unbound Tc-99m was calculated. Statical analysis was used paired T-test and one way ANOVA with SPSS 10.0. Results: The binding efficiency at 1 mL of blood volume was $73{\pm}32%,\;91{\pm}10%$ at 3 mL and $96{\pm}7%$ at 5 mL (p<0.01). The binding efficiency at 5 min of tinning time was $45{\pm}23%,\;98{\pm}6%$, at 20 min and $97{\pm}8%$ at 35 min (p<0.001). The binding efficiency at 10 min of incubation time was $96{\pm}7%,\;95{\pm}12%$ at 25 min and $98{\pm}3%$ at 40 min (p>0.05). The binding efficiency in case of using rotating invertor was $96{\pm}7%$ and the binding efficiency in case of not using it was $87{\pm}18%$ (p>0.05). There was no significant difference between them. In binding efficiency according to kinds of anticoagulants, ACD was $98{\pm}4%$, CPDA was $97{\pm}6%$ and heparin was $89{\pm}20%$ (p<0.001). Conclusion: When modified in vivo erythrocyte labeling technique is used with Tc-99m, the methods to obtain the highest labeling efficiency are as follow. The withdrawing blood volume should be over 3 mL, tinning time should be kept between 20 min and 35 min, and incubation time should be kept between 10 min and 40 min. ACD or CPDA have to be used as a anticoagulant except heparin and the blood samples should be placed on rotating invertor during incubation.

M-mode Ultrasound Assessment of Diaphragmatic Excursions in Chronic Obstructive Pulmonary Disease : Relation to Pulmonary Function Test and Mouth Pressure (만성폐쇄성 폐질환 환자에서 M-mode 초음파로 측정한 횡격막 운동)

  • Lim, Sung-Chul;Jang, Il-Gweon;Park, Hyeong-Kwan;Hwang, Jun-Hwa;Kang, Yu-Ho;Kim, Young-Chul;Park, Kyung-Ok
    • Tuberculosis and Respiratory Diseases
    • /
    • v.45 no.4
    • /
    • pp.736-745
    • /
    • 1998
  • Background: Respiratory muscle interaction is further profoundly affected by a number of pathologic conditions. Hyperinflation may be particularly severe in chronic obstructive pulmonary disease(COPD) patients, in whom the functional residual capacity(FRC) often exceeds predicted total lung capacity(TLC). Hyperinflation reduces the diaphragmatic effectiveness as a pressure generator and reduces diaphragmatic contribution to chest wall motion. Ultrasonography has recently been shown to be a sensitive and reproducible method of assessing diaphragmatic excursion. This study was performed to evaluate how differences of diaphragmatic excursion measured by ultrasonography associate with normal subjects and COPD patients. Methods: We measured diaphragmatic excursions with ultrasonography on 28 healthy subjects(l6 medical students, 12 age-matched control) and 17 COPD patients. Ultrasonographic measurements were performed during tidal breathing and maximal respiratory efforts approximating vital capacity breathing using Aloka KEC-620 with 3.5 MHz transducer. Measurements were taken in the supine posture. The ultrasonographic probe was positioned transversely in the midclavicular line below the right subcostal margin. After detecting the right hemidiaphragm in the B-mode the ultrasound beam was then positioned so that it was approximately parallel to the movement of middle or posterior third of right diaphragm. Recordings in the M-mode at this position were made throughout the test. Measurements of diaphragmatic excursion on M-mode tracing were calculated by the average gap in 3 times-respiration cycle. Pulmonary function test(SensorMedics 2800), maximal inspiratory(PImax) and expiratory mouth pressure(PEmax, Vitalopower KH-101, Chest) were measured in the seated posture. Results: During the tidal breathing, diaphragmatic excursions were recorded $1.5{\pm}0.5cm$, $1.7{\pm}0.5cm$ and $1.5{\pm}0.6cm$ in medical students, age-matched control group and COPD patients, respectively. Diaphragm excursions during maximal respiratory efforts were significantly decreased in COPD patients ($3.7{\pm}1.3cm$) when compared with medical students, age-matched control group($6.7{\pm}1.3cm$, $5.8{\pm}1.2cm$, p< 0.05}. During maximal respiratory efforts in control subjects, diaphragm excursions were correlated with $FEV_1$, FEVl/FVC, PEF, PIF, and height. In COPD patients, diaphragm excursions during maximal respiratory efforts were correlated with PEmax(maximal expiratory pressure), age, and %FVC. In multiple regression analysis, the combination of PEmax and age was an independent marker of diaphragm excursions during maximal respiratory efforts with COPD patients. Conclusion: COPD subjects had smaller diaphragmatic excursions during maximal respiratory efforts than control subjects. During maximal respiratory efforts in COPD patients, diaphragm excursions were well correlated with PEmax. These results suggest that diaphragm excursions during maximal respiratory efforts with COPD patients may be valuable at predicting the pulmonary function.

  • PDF