• 제목/요약/키워드: Generative model

검색결과 377건 처리시간 0.029초

A Study on Contents Development for the Use of Generative AI in Elementary and Secondary Classes

  • Injoo Kim;Kwihoon Kim
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권8호
    • /
    • pp.223-230
    • /
    • 2024
  • 본 연구에서는 초‧중등교육에서 다양한 생성형 AI를 활용하여 수업이 계획될 수 있도록 수업 단계별, 수업 모형별 생성형 AI 활용 콘텐츠를 개발하고자 하였다. 이를 위하여 수업 단계별 생성형 AI 활용과 학교급별, 교과별 수업 모형에 따른 생성형 AI 활용을 위한 콘텐츠를 개발하고 현장 전문가 13인의 검토를 통해 수정‧보완하였다. 수업 단계별 생성형 AI 활용을 위해 일반적인 수업의 단계를 '수업 준비', '수업 중', '수업 정리' 세 단계로 구분하고 각 단계별 생성형 AI의 활용 주체와 활용 내용, 활용할 수 있는 생성형 AI의 종류를 정리하였으며, 수업 모형에 따른 생성형 AI 활용을 위해 학교급별, 교과별 특성에 따른 교수‧학습 모형을 바탕으로 8가지 수업 콘텐츠를 개발하였다. 초‧중등 수업에서 생성형 AI 활용을 확대하기 위해서는 학교급별, 교과별 더욱 다양한 수업 콘텐츠를 개발하여 현장에 보급할 필요가 있다. 또한 생성형 AI를 수업에서 활용할 때 고려해야 할 사항 등에 관한 자료의 개발도 필요하다.

생성형 AI 이해 및 활용을 위한 대학 교양교과목 교육과정 개발 (Development of university liberal arts curriculum for understanding and utilizing generative AI)

  • 박지현;박종진
    • 문화기술의 융합
    • /
    • 제10권5호
    • /
    • pp.645-650
    • /
    • 2024
  • 본 논문은 챗GPT를 중심으로 생성형 AI를 활용한 대학 교양교육을 위해 지방 소재의 두 대학에서 교양교과목 교육과정을 공동으로 설계하고 개발하였다. 개발된 교육과정은 기존 연구에서 제시된 대학 챗GPT 통합 활용 수업 설계를 위한 개념적 구성요소를 고려하여 챗GPT의 기반을 이루는 언어모델과 인공지능을 이해하고 챗GPT을 포함하는 생성형 AI를 다양한 도메인에 활용하는 내용으로 개발하였다. 개발된 교육과정은 다양한 전공의 수강생을 대상으로 챗GPT의 기반인 자연어처리 언어모델과 인공지능의 개념 및 변화양상을 소개하고, 생성 AI 및 대형언어모델(LLM)인 챗GPT와 다양한 오픈소스 생성 모델을 이용하여 나만의 AI 서비스를 구현하며, 대학 교양교육에서 혁신적인 교육방법으로서, 대학간 공유협력 공동교육과정운영을 위한 사례를 제시하고자 한다.

적대적 생성 신경망을 이용한 레이더 기반 초단시간 강우예측 (Radar-based rainfall prediction using generative adversarial network)

  • 윤성심;신홍준;허재영
    • 한국수자원학회논문집
    • /
    • 제56권8호
    • /
    • pp.471-484
    • /
    • 2023
  • 적대적 생성 신경망 기반의 딥러닝 모델은 학습된 정보를 바탕으로 새로운 정보를 생성하는데 특화되어 있다. 구글 딥마인드에서 개발한 deep generative model of rain (DGMR) 모델은 대규모 레이더 이미지 데이터의 복잡한 패턴과 관계를 학습하여, 예측 레이더 이미지를 생성하는 적대적 생성 신경망 모델이다. 본 연구에서는 환경부 레이더 강우관측자료를 이용하여 DGMR 모델을 학습하고, 2021년 8월 호우사례를 대상으로 적대적 생성 신경망을 이용하여 강우예측을 수행하고 기존 예측기법들과 정확도를 비교하였다. DGMR은 대체적으로 선행 60분까지는 강우 분포 위치가 관측강우와 가장 유사하였으나, 전체 영역에서 강한 강우가 발생한 사례에서는 강우가 지속적으로 발달하는 것으로 예측하는 경향이 있었다. 통계적 평가에서도 DGMR 기법이 1시간 선행예측에서 임계성공지수 0.57~0.79, 평균절대오차 0.57~1.36 mm로 나타나 타 기법 대비 효과적인 강우예측 기법임을 보여주었다. 다만, 생성 결과의 다양성이 부족한 경우가 발생하여 예측 정확도를 저하하므로 다양성을 개선하기 위한 연구와 2시간 이상의 선행예측에 대한 정확도 개선을 위해 물리기반 수치예보모델 예측강우 자료를 이용한 보완이 필요할 것으로 판단되었다.

Updated Primer on Generative Artificial Intelligence and Large Language Models in Medical Imaging for Medical Professionals

  • Kiduk Kim;Kyungjin Cho;Ryoungwoo Jang;Sunggu Kyung;Soyoung Lee;Sungwon Ham;Edward Choi;Gil-Sun Hong;Namkug Kim
    • Korean Journal of Radiology
    • /
    • 제25권3호
    • /
    • pp.224-242
    • /
    • 2024
  • The emergence of Chat Generative Pre-trained Transformer (ChatGPT), a chatbot developed by OpenAI, has garnered interest in the application of generative artificial intelligence (AI) models in the medical field. This review summarizes different generative AI models and their potential applications in the field of medicine and explores the evolving landscape of Generative Adversarial Networks and diffusion models since the introduction of generative AI models. These models have made valuable contributions to the field of radiology. Furthermore, this review also explores the significance of synthetic data in addressing privacy concerns and augmenting data diversity and quality within the medical domain, in addition to emphasizing the role of inversion in the investigation of generative models and outlining an approach to replicate this process. We provide an overview of Large Language Models, such as GPTs and bidirectional encoder representations (BERTs), that focus on prominent representatives and discuss recent initiatives involving language-vision models in radiology, including innovative large language and vision assistant for biomedicine (LLaVa-Med), to illustrate their practical application. This comprehensive review offers insights into the wide-ranging applications of generative AI models in clinical research and emphasizes their transformative potential.

적대적 생성 모델을 활용한 사용자 행위 이상 탐지 방법 (Anomaly Detection for User Action with Generative Adversarial Networks)

  • 최남웅;김우주
    • 지능정보연구
    • /
    • 제25권3호
    • /
    • pp.43-62
    • /
    • 2019
  • 한때, 이상 탐지 분야는 특정 데이터로부터 도출한 기초 통계량을 기반으로 이상 유무를 판단하는 방법이 지배적이었다. 이와 같은 방법론이 가능했던 이유는 과거엔 데이터의 차원이 단순하여 고전적 통계 방법이 효과적으로 작용할 수 있었기 때문이다. 하지만 빅데이터 시대에 접어들며 데이터의 속성이 복잡하게 변화함에 따라 더는 기존의 방식으로 산업 전반에 발생하는 데이터를 정확하게 분석, 예측하기 어렵게 되었다. 따라서 기계 학습 방법을 접목한 SVM, Decision Tree와 같은 모형을 활용하게 되었다. 하지만 지도 학습 기반의 모형은 훈련 데이터의 이상과 정상의 클래스 수가 비슷할 때만 테스트 과정에서 정확한 예측을 할 수 있다는 특수성이 있고 산업에서 생성되는 데이터는 대부분 정답 클래스가 불균형하기에 지도 학습 모형을 적용할 경우, 항상 예측되는 결과의 타당성이 부족하다는 문제점이 있다. 이러한 단점을 극복하고자 현재는 클래스 분포에 영향을 받지 않는 비지도 학습 기반의 모델을 바탕으로 이상 탐지 모형을 구성하여 실제 산업에 적용하기 위해 시행착오를 거치고 있다. 본 연구는 이러한 추세에 발맞춰 적대적 생성 신경망을 활용하여 이상 탐지하는 방법을 제안하고자 한다. 시퀀스 데이터를 학습시키기 위해 적대적 생성 신경망의 구조를 LSTM으로 구성하고 생성자의 LSTM은 2개의 층으로 각각 32차원과 64차원의 은닉유닛으로 구성, 판별자의 LSTM은 64차원의 은닉유닛으로 구성된 1개의 층을 사용하였다. 기존 시퀀스 데이터의 이상 탐지 논문에서는 이상 점수를 도출하는 과정에서 판별자가 실제데이터일 확률의 엔트로피 값을 사용하지만 본 논문에서는 자질 매칭 기법을 활용한 함수로 변경하여 이상 점수를 도출하였다. 또한, 잠재 변수를 최적화하는 과정을 LSTM으로 구성하여 모델 성능을 향상시킬 수 있었다. 변형된 형태의 적대적 생성 모델은 오토인코더의 비해 모든 실험의 경우에서 정밀도가 우세하였고 정확도 측면에서는 대략 7% 정도 높음을 확인할 수 있었다.

확률적 자율 학습을 위한 베이지안 모델 (Bayesian Model for Probabilistic Unsupervised Learning)

  • 최준혁;김중배;김대수;임기욱
    • 한국지능시스템학회논문지
    • /
    • 제11권9호
    • /
    • pp.849-854
    • /
    • 2001
  • Bishop이 제안한 Generative Topographic Mapping(GTM)은 Kohonen이 제안한 자율 학습 신경망인 Self Organizing Maps(SOM)의 확률 버전이다. GTM은 데이터가 생성되는 확률 분포를 잠재 변수, 혹은 은닉 변수를 사용하여 모형화한다. 이것은 SOM에서는 구현될 수 없는 GTM만의 특징이며, 이러한 특징으로 인하여 SOM의 한계들을 극복할 수 있게 된다. 본 논문에서는 이러한 GTM 모형에 베이지안 학습(Bayesian learning)을 결합하여 작은 오분류율을 가지는 분류 알고리즘인 베이지안 GTM(Bayesian GTM)을 제안한다. 이 알고리즘은 기존의 GTM의 빠른 계산 처리 능력과 데이터에 대한 확률 분포, 그리고 베이지안 추론의 정확성을 이용하여 기존의 분류 알고리즘보다 우수한 결과를 얻게 된다. 본 논문에서는 기존의 분류 알고리즘에서 많이 실험하였다. 학습 데이터를 통하여 이를 확인하였다.

  • PDF

유전자 발현량 데이터 증대를 위한 Conditional VAE 기반 생성 모델 (Conditional Variational Autoencoder-based Generative Model for Gene Expression Data Augmentation)

  • 봉현수;오민식
    • 방송공학회논문지
    • /
    • 제28권3호
    • /
    • pp.275-284
    • /
    • 2023
  • 유전자 발현 데이터는 질병의 예후 예측, 약물 반응성 예측 등 질병에 대한 이해와 정밀 의료 실현을 위한 연구들에 활용될 수 있지만 충분한 양의 데이터를 수집하는 데 많은 비용적 문제가 있다. 본 논문에서는 Conditional VAE에 기반한 유전자 발현 데이터 생성 모델을 제안하였다. 이전 연구인 WGAN-GP기반의 유전자 발현 생성 모델과 정형 데이터 생성 모델인 CTGAN, TVAE와 비교하여 본 논문의 Conditional VAE기반 모델이 생물학적, 통계학적으로 더 유의미한 합성 데이터를 생성할 수 있음을 보였다.

생성적 적대 신경망을 이용한 함정전투체계 획득 영상의 초고해상도 영상 복원 연구 (A Study on Super Resolution Image Reconstruction for Acquired Images from Naval Combat System using Generative Adversarial Networks)

  • 김동영
    • 디지털콘텐츠학회 논문지
    • /
    • 제19권6호
    • /
    • pp.1197-1205
    • /
    • 2018
  • 본 논문에서는 함정전투체계의 EOTS나 IRST에서 획득한 영상을 초고해상도 영상으로 복원한다. 저해상도에서 초고해상도의 영상을 생성하는 생성 모델과 이를 판별하는 판별 모델로 구성된 생성적 적대 신경망을 이용하고, 다양한 학습 파라미터의 변화를 통한 최적의 값을 제안한다. 실험에 사용되는 학습 파라미터는 crop size와 sub-pixel layer depth, 학습 이미지 종류로 구성되며, 평가는 일반적인 영상 품질 평가 지표에 추가적으로 특징점 추출 알고리즘을 함께 사용하였다. 그 결과, Crop size가 클수록, Sub-pixel layer depth가 깊을수록, 고해상도의 학습이미지를 사용할수록 더 좋은 품질의 영상을 생성한다.

Generative Adversarial Networks for single image with high quality image

  • Zhao, Liquan;Zhang, Yupeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권12호
    • /
    • pp.4326-4344
    • /
    • 2021
  • The SinGAN is one of generative adversarial networks that can be trained on a single nature image. It has poor ability to learn more global features from nature image, and losses much local detail information when it generates arbitrary size image sample. To solve the problem, a non-linear function is firstly proposed to control downsampling ratio that is ratio between the size of current image and the size of next downsampled image, to increase the ratio with increase of the number of downsampling. This makes the low-resolution images obtained by downsampling have higher proportion in all downsampled images. The low-resolution images usually contain much global information. Therefore, it can help the model to learn more global feature information from downsampled images. Secondly, the attention mechanism is introduced to the generative network to increase the weight of effective image information. This can make the network learn more local details. Besides, in order to make the output image more natural, the TVLoss function is introduced to the loss function of SinGAN, to reduce the difference between adjacent pixels and smear phenomenon for the output image. A large number of experimental results show that our proposed model has better performance than other methods in generating random samples with fixed size and arbitrary size, image harmonization and editing.

생성형 AI 기반 초기설계단계 외관디자인 시각화 접근방안 - 건축가 스타일 추가학습 모델 활용을 바탕으로 - (Generative AI-based Exterior Building Design Visualization Approach in the Early Design Stage - Leveraging Architects' Style-trained Models -)

  • 유영진;이진국
    • 한국BIM학회 논문집
    • /
    • 제14권2호
    • /
    • pp.13-24
    • /
    • 2024
  • This research suggests a novel visualization approach utilizing Generative AI to render photorealistic architectural alternatives images in the early design phase. Photorealistic rendering intuitively describes alternatives and facilitates clear communication between stakeholders. Nevertheless, the conventional rendering process, utilizing 3D modelling and rendering engines, demands sophisticate model and processing time. In this context, the paper suggests a rendering approach employing the text-to-image method aimed at generating a broader range of intuitive and relevant reference images. Additionally, it employs an Text-to-Image method focused on producing a diverse array of alternatives reflecting architects' styles when visualizing the exteriors of residential buildings from the mass model images. To achieve this, fine-tuning for architects' styles was conducted using the Low-Rank Adaptation (LoRA) method. This approach, supported by fine-tuned models, allows not only single style-applied alternatives, but also the fusion of two or more styles to generate new alternatives. Using the proposed approach, we generated more than 15,000 meaningful images, with each image taking only about 5 seconds to produce. This demonstrates that the Generative AI-based visualization approach significantly reduces the labour and time required in conventional visualization processes, holding significant potential for transforming abstract ideas into tangible images, even in the early stages of design.