• 제목/요약/키워드: Generative Model

검색결과 371건 처리시간 0.027초

Design to Improve Educational Competency Using ChatGPT

  • Choong Hyong LEE
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제16권1호
    • /
    • pp.182-190
    • /
    • 2024
  • Various artificial intelligence neural network models that have emerged since 2014 enable the creation of new content beyond the existing level of information discrimination and withdrawal, and the recent generative artificial intelligences such as ChatGPT and Gall-E2 create and present new information similar to actual data, enabling natural interaction because they create and provide verbal expressions similar to humans, unlike existing chatbots that simply present input content or search results. This study aims to present a model that can improve the ChatGPT communication skills of university students through curriculum research on ChatGPT, which can be participated by students from all departments, including engineering, humanities, society, health, welfare, art, tourism, management, and liberal arts. It is intended to design a way to strengthen competitiveness to embody the practical ability to solve problems through ethical attitudes, AI-related technologies, data management, and composition processes as knowledge necessary to perform tasks in the artificial intelligence era, away from simple use capabilities. It is believed that through creative education methods, it is possible to improve university awareness in companies and to seek industry-academia self-reliant courses.

Evaluating Chest Abnormalities Detection: YOLOv7 and Detection Transformer with CycleGAN Data Augmentation

  • Yoshua Kaleb Purwanto;Suk-Ho Lee;Dae-Ki Kang
    • International journal of advanced smart convergence
    • /
    • 제13권2호
    • /
    • pp.195-204
    • /
    • 2024
  • In this paper, we investigate the comparative performance of two leading object detection architectures, YOLOv7 and Detection Transformer (DETR), across varying levels of data augmentation using CycleGAN. Our experiments focus on chest scan images within the context of biomedical informatics, specifically targeting the detection of abnormalities. The study reveals that YOLOv7 consistently outperforms DETR across all levels of augmented data, maintaining better performance even with 75% augmented data. Additionally, YOLOv7 demonstrates significantly faster convergence, requiring approximately 30 epochs compared to DETR's 300 epochs. These findings underscore the superiority of YOLOv7 for object detection tasks, especially in scenarios with limited data and when rapid convergence is essential. Our results provide valuable insights for researchers and practitioners in the field of computer vision, highlighting the effectiveness of YOLOv7 and the importance of data augmentation in improving model performance and efficiency.

안정적인 실시간 얼굴 특징점 추적과 감정인식 응용 (Robust Real-time Tracking of Facial Features with Application to Emotion Recognition)

  • 안병태;김응희;손진훈;권인소
    • 로봇학회논문지
    • /
    • 제8권4호
    • /
    • pp.266-272
    • /
    • 2013
  • Facial feature extraction and tracking are essential steps in human-robot-interaction (HRI) field such as face recognition, gaze estimation, and emotion recognition. Active shape model (ASM) is one of the successful generative models that extract the facial features. However, applying only ASM is not adequate for modeling a face in actual applications, because positions of facial features are unstably extracted due to limitation of the number of iterations in the ASM fitting algorithm. The unaccurate positions of facial features decrease the performance of the emotion recognition. In this paper, we propose real-time facial feature extraction and tracking framework using ASM and LK optical flow for emotion recognition. LK optical flow is desirable to estimate time-varying geometric parameters in sequential face images. In addition, we introduce a straightforward method to avoid tracking failure caused by partial occlusions that can be a serious problem for tracking based algorithm. Emotion recognition experiments with k-NN and SVM classifier shows over 95% classification accuracy for three emotions: "joy", "anger", and "disgust".

Two-stage layout-size optimization method for prow stiffeners

  • Liu, Zhijun;Cho, Shingo;Takezawa, Akihiro;Zhang, Xiaopeng;Kitamura, Mitsuru
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권1호
    • /
    • pp.44-51
    • /
    • 2019
  • Designing sophisticate ship structures that satisfy several design criteria simultaneously with minimum weight and cost is an important engineering issue. For a ship structure composed of a shell and stiffeners, this issue is more serious because their mutual effect has to be addressed. In this study, a two-stage optimization method is proposed for the conceptual design of stiffeners in a ship's prow. In the first stage, a topology optimization method is used to determine a potential stiffener distribution based on the optimal results, whereupon stiffeners are constructed according to stiffener generative theory and the material distribution. In the second stage, size optimization is conducted to optimize the plate and stiffener sections simultaneously based on a parametric model. A final analysis model of the ship-prow structure is presented to assess the validity of this method. The analysis results show that the two-stage optimization method is effective for stiffener conceptual design, which provides a reference for designing actual stiffeners for ship hulls.

Face inpainting via Learnable Structure Knowledge of Fusion Network

  • Yang, You;Liu, Sixun;Xing, Bin;Li, Kesen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권3호
    • /
    • pp.877-893
    • /
    • 2022
  • With the development of deep learning, face inpainting has been significantly enhanced in the past few years. Although image inpainting framework integrated with generative adversarial network or attention mechanism enhanced the semantic understanding among facial components, the issues of reconstruction on corrupted regions are still worthy to explore, such as blurred edge structure, excessive smoothness, unreasonable semantic understanding and visual artifacts, etc. To address these issues, we propose a Learnable Structure Knowledge of Fusion Network (LSK-FNet), which learns a prior knowledge by edge generation network for image inpainting. The architecture involves two steps: Firstly, structure information obtained by edge generation network is used as the prior knowledge for face inpainting network. Secondly, both the generated prior knowledge and the incomplete image are fed into the face inpainting network together to get the fusion information. To improve the accuracy of inpainting, both of gated convolution and region normalization are applied in our proposed model. We evaluate our LSK-FNet qualitatively and quantitatively on the CelebA-HQ dataset. The experimental results demonstrate that the edge structure and details of facial images can be improved by using LSK-FNet. Our model surpasses the compared models on L1, PSNR and SSIM metrics. When the masked region is less than 20%, L1 loss reduce by more than 4.3%.

A many-objective evolutionary algorithm based on integrated strategy for skin cancer detection

  • Lan, Yang;Xie, Lijie;Cai, Xingjuan;Wang, Lifang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권1호
    • /
    • pp.80-96
    • /
    • 2022
  • Nowadays, artificial intelligence promotes the rapid development of skin cancer detection technology, and the federated skin cancer detection model (FSDM) and dual generative adversarial network model (DGANM) solves the fragmentation and privacy of data to a certain extent. To overcome the problem that the many-objective evolutionary algorithm (MaOEA) cannot guarantee the convergence and diversity of the population when solving the above models, a many-objective evolutionary algorithm based on integrated strategy (MaOEA-IS) is proposed. First, the idea of federated learning is introduced into population mutation, the new parents are generated through sub-populations employs different mating selection operators. Then, the distance between each solution to the ideal point (SID) and the Achievement Scalarizing Function (ASF) value of each solution are considered comprehensively for environment selection, meanwhile, the elimination mechanism is used to carry out the select offspring operation. Eventually, the FSDM and DGANM are solved through MaOEA-IS. The experimental results show that the MaOEA-IS has better convergence and diversity, and it has superior performance in solving the FSDM and DGANM. The proposed MaOEA-IS provides more reasonable solutions scheme for many scholars of skin cancer detection and promotes the progress of intelligent medicine.

GAN 및 물리과정 기반 모델 결합을 통한 Hybrid 강우예측모델 개발 (Development of hybrid precipitation nowcasting model by using conditional GAN-based model and WRF)

  • 최수연;김연주
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.100-100
    • /
    • 2023
  • 단기 강우 예측에는 주로 물리과정 기반 수치예보모델(NWPs, Numerical Prediction Models) 과 레이더 기반 확률론적 방법이 사용되어 왔으며, 최근에는 머신러닝을 이용한 레이더 기반 강우예측 모델이 단기 강우 예측에 뛰어난 성능을 보이는 것을 확인하여 관련 연구가 활발히 진행되고 있다. 하지만 머신러닝 기반 모델은 예측 선행시간 증가 시 성능이 크게 저하되며, 또한 대기의 물리적 과정을 고려하지 않는 Black-box 모델이라는 한계점이 존재한다. 본 연구에서는 이러한 한계를 극복하기 위해 머신러닝 기반 blending 기법을 통해 물리과정 기반 수치예보모델인 Weather Research and Forecasting (WRF)와 최신 머신러닝 기법 (cGAN, conditional Generative Adversarial Network) 기반 모델을 결합한 Hybrid 강우예측모델을 개발하고자 하였다. cGAN 기반 모델 개발을 위해 1시간 단위 1km 공간해상도의 레이더 반사도, WRF 모델로부터 산출된 기상 자료(온도, 풍속 등), 유역관련 정보(DEM, 토지피복 등)를 입력 자료로 사용하여 모델을 학습하였으며, 모델을 통해 물리 정보 및 머신러닝 기반 강우 예측을 생성하였다. 이렇게 생성된cGAN 기반 모델 결과와 WRF 예측 결과를 결합하는 머신러닝 기반 blending 기법을 통해Hybrid 강우예측 결과를 최종적으로 도출하였다. 본 연구에서는 Hybrid 강우예측 모델의 성능을 평가하기 위해 수도권 및 안동댐 유역에서 발생한 호우 사례를 기반으로 최대 선행시간 6시간까지 모델 예측 결과를 분석하였다. 이를 통해 물리과정 기반 모델과 머신러닝 기반 모델을 결합하는 Hybrid 기법을 적용하여 높은 정확도와 신뢰도를 가지는 고해상도 강수 예측 자료를 생성할 수 있음을 확인하였다.

  • PDF

멀티턴 대화를 활용한 레퍼런스 기반의 발화 생성 모델 (Reference-based Utterance Generation Model using Multi-turn Dialogue)

  • 박상민;손유리;금빛나;김홍진;김학수;김재은
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.88-91
    • /
    • 2022
  • 디지털 휴먼, 민원 상담, ARS 등 칫챗의 활용과 수요가 증가함에 따라 칫챗의 성능 향상을 위한 다양한 연구가 진행되고 있다. 특히, 오토 인코더(Auto-encoder) 기반의 생성 모델(Generative Model)은 높은 성능을 보이며 지속적인 연구가 이루어지고 있으나, 이전 대화들에 대한 충분한 문맥 정보의 반영이 어렵고 문법적으로 부적절한 답변을 생성하는 문제가 있다. 이를 개선하기 위해 검색 기반의 생성 모델과 관련된 연구가 진행되고 있으나, 현재 시점의 문장이 유사해도 이전 문장들에 따라 의도와 답변이 달라지는 멀티턴 대화 특징을 반영하여 대화를 검색하는 연구가 부족하다. 본 논문에서는 이와 같은 멀티턴 대화의 특징이 고려된 검색 방법을 제안하고 검색된 레퍼런스(준정답 문장)를 멀티턴 대화와 함께 생성 모델의 입력으로 활용하여 학습시키는 방안을 제안한다. 제안 방안으로 학습된 발화 생성 모델은 기존 모델과 비교 평가를 수행하며 Rouge-1 스코어에서 13.11점, Rouge-2 스코어에서 10.09점 Rouge-L 스코어에서 13.2점 향상된 성능을 보였고 이를 통해 제안 방안의 우수성을 입증하였다.

  • PDF

Bi-LSTM 보조 신경망 모델을 결합한 생성형 한국어 Inverse Text Normalization 모델 (Generative Korean Inverse Text Normalization Model Combining a Bi-LSTM Auxiliary Model)

  • 조정제;신동수;조경빈;한영섭;전병기
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.716-721
    • /
    • 2023
  • Inverse Text Normalization(ITN) 모델은 음성 인식(STT) 엔진의 중요한 후처리 영역 중 하나이며, STT 인식 결과의 가독성을 개선한다. 최근 ITN 모델에 심층신경망을 활용한 연구가 진행되고 있다. 심층 신경망을 사용하는 대부분의 선행연구는 문장 내 변환이 필요한 부분에 토큰 태깅을 진행하는 방식이다. 그러나 이는 Out-of-vocabulary(OOV) 이슈가 있으며, 학습 데이터 구축 시 토큰 단위의 섬세한 태깅 작업이 필요하다는 한계점이 존재한다. 더불어 선행 연구에서는 STT 인식 결과를 그대로 사용하는데, 이는 띄어쓰기가 중요한 한국어 ITN 처리에 변환 성능을 보장할 수 없다. 본 연구에서는 BART 기반 생성 모델로 생성형 ITN 모델을 구축하였고, Bi-LSTM 기반 보조 신경망 모델을 결합하여 STT 인식 결과에 대한 고유명사 처리, 띄어쓰기 교정 기능을 보완한 모델을 제안한다. 또한 보조 신경망을 통해 생성 모델 처리 여부를 판단하여 평균 추론 속도를 개선하였다. 실험을 통해 두 모델의 각 정량 성능 지표에서 우수한 성능을 확인하였고 결과적으로 본 연구에서 제안하는 두 모델의 결합된 방법론의 효과성을 제시하였다.

  • PDF

의미적 손실 함수를 통한 Cycle GAN 성능 개선 (Improved Cycle GAN Performance By Considering Semantic Loss)

  • 정태영;이현식;엄예림;박경수;신유림;문재현
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.908-909
    • /
    • 2023
  • Recently, several generative models have emerged and are being used in various industries. Among them, Cycle GAN is still used in various fields such as style transfer, medical care and autonomous driving. In this paper, we propose two methods to improve the performance of these Cycle GAN model. The ReLU activation function previously used in the generator was changed to Leaky ReLU. And a new loss function is proposed that considers the semantic level rather than focusing only on the pixel level through the VGG feature extractor. The proposed model showed quality improvement on the test set in the art domain, and it can be expected to be applied to other domains in the future to improve performance.