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Abstract  

In this paper, we investigate the comparative performance of two leading object detection architectures, 
YOLOv7 and Detection Transformer (DETR), across varying levels of data augmentation using CycleGAN. 
Our experiments focus on chest scan images within the context of biomedical informatics, specifically targeting 
the detection of abnormalities. The study reveals that YOLOv7 consistently outperforms DETR across all levels 
of augmented data, maintaining better performance even with 75% augmented data. Additionally, YOLOv7 
demonstrates significantly faster convergence, requiring approximately 30 epochs compared to DETR's 300 
epochs. These findings underscore the superiority of YOLOv7 for object detection tasks, especially in scenarios 
with limited data and when rapid convergence is essential. Our results provide valuable insights for 
researchers and practitioners in the field of computer vision, highlighting the effectiveness of YOLOv7 and the 
importance of data augmentation in improving model performance and efficiency. 
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1. Introduction 

In the ever-evolving landscape of computer vision, object detection stands as a cornerstone task, essential 
for myriad applications ranging from autonomous vehicles to medical diagnosis. As of 2024, significant strides 
have been made in the field, driven by the relentless pursuit of accuracy, efficiency, and adaptability to diverse 
real-world scenarios. 

Amidst these advancements, one of the most prominent families of object detection models is the You Only 
Look Once (YOLO) series. YOLO revolutionized the field with its unified approach, performing both object 
localization and classification in a single pass through the neural network. This real-time capability made 
YOLO models invaluable for applications requiring rapid decision-making, such as video surveillance and 
robotics [1][2][3][4]. 
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Meanwhile, the introduction of transformer architectures, initially developed for natural language 
processing tasks, has sparked a paradigm shift in computer vision. Transformers have demonstrated remarkable 
success in various vision tasks, owing to their ability to capture global dependencies and long-range 
interactions within the input data. In the context of object detection, models such as the Detection Transformer 
(DETR) have emerged, leveraging transformer architecture to directly predict object bounding boxes and class 
labels without relying on traditional anchor-based approaches [5]. 

Data augmentation has long been recognized as a critical component in training robust and generalizable 
deep learning models. By artificially augmenting the training data with diverse variations, models can better 
adapt to variations in the input data encountered during inference. Recent advancements in data augmentation 
techniques, such as generative adversarial networks (GANs), have further expanded the repertoire of 
augmentation strategies. CycleGAN, a notable example, enables unpaired image-to-image translation, 
allowing for realistic transformations between different domains [10]. By leveraging CycleGAN, researchers 
can generate augmented data with minimal manual effort, facilitating the training of more robust object 
detection models. 

In this paper, we delve into the realm of object detection, exploring the comparative performance of two 
leading architectures: YOLOv7 and Detection Transformer. Specifically, we investigate their efficacy across 
varying levels of data augmentation using CycleGAN, focusing on chest scan images in the context of 
biomedical informatics. Through rigorous experimentation and analysis, we aim to provide insights into the 
strengths and limitations of each approach and their implications for real-world applications in medical 
imaging and beyond. 

 
2. Related Work 

2.1 You Only Look Once (YOLO) 

The You Only Look Once (YOLO) series has undergone several iterations, each introducing improvements 
in speed, accuracy, and feature representation. YOLOv1 pioneered the concept of real-time object detection 
by framing the task as a single regression problem, achieving impressive results albeit with limitations in 
detecting small objects [2]. Subsequent versions, such as YOLOv3 and YOLOv4, addressed these limitations 
by introducing architectural enhancements and multi-scale detection strategies, significantly improving 
performance across various datasets and object sizes [3][4]. 

 

 
Figure 1. YOLO Architecture Streamline 

The main point of object detection algorithm is fast and strong on detecting a feature of a certain object [1]. 
YOLOv7, short for "You Only Look Once version 7," represents a significant advancement in object detection 
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architecture within the realm of computer vision. Developed as an evolution of previous YOLO models, 
YOLOv7 introduces several key innovations that enhance its performance and efficiency. One notable feature 
is its streamlined architecture, which optimizes the balance between accuracy and speed, making it well-suited 
for real-time applications. This efficiency is achieved through a carefully designed network structure that 
reduces computational complexity while preserving the model's ability to accurately detect objects across 
various scales and categories. 

In conducting object detection using YOLOv7, the algorithm demonstrates rapid training and high accuracy. 
According to the research findings, YOLOv7 can achieve optimal training within just 30 epochs [1]. This is 
attributed to the optimization of the algorithm itself, which includes model scaling for concatenation-based 
models. Furthermore, YOLOv7 is equipped with planned re-parameterized convolution and coarse for 
auxiliary and fine for lead loss [1]. These optimizations enable the algorithm to swiftly and effectively reach 
its optimal convergence point. 

Another distinctive aspect of YOLOv7 is its flexibility and adaptability to different deployment scenarios. 
The architecture allows for seamless integration with diverse hardware platforms, enabling deployment on 
both resource-constrained edge devices and high-performance computing systems. This versatility makes 
YOLOv7 an attractive choice for a wide range of applications, including autonomous vehicles, surveillance 
systems, and robotics, where real-time object detection is critical. Additionally, YOLOv7 incorporates state-
of-the-art techniques in deep learning, such as attention mechanisms and feature pyramid networks, further 
enhancing its capability to detect objects with high accuracy and robustness in complex scenes. 

 
2.2 Detection Transformer (DETR) 

Originally designed for natural language processing tasks, transformer architectures have found remarkable 
success in computer vision applications [7]. The transformer's self-attention mechanism enables capturing 
long-range dependencies within the input data, making it well-suited for tasks requiring global context 
understanding, such as image classification, object detection, and segmentation [6][8]. 

In the domain of object detection, the Detection Transformer (DETR) stands out as a pioneering model that 
replaces traditional convolutional layers with transformer blocks. By directly predicting object bounding boxes 
and class labels without the need for anchor boxes or region proposal networks, DETR offers a streamlined 
approach to object detection [5]. This paradigm shift has led to significant improvements in accuracy and 
efficiency, positioning transformer-based models as formidable competitors to traditional convolutional neural 
network (CNN) architectures. 

 

  
Figure 2. Detection Transformer 
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As in figure 2, one of the standout abilities of DETR is its capacity to handle variable numbers of objects 
in an image without the need for predefined anchors or bounding boxes [5]. This flexibility allows DETR to 
accurately detect objects across a wide range of scales and aspect ratios, making it particularly well-suited for 
scenarios with complex scenes or densely packed objects. Furthermore, DETR exhibits remarkable 
generalization capabilities, demonstrating robust performance even on datasets with diverse object categories 
and challenging backgrounds. Its ability to learn rich spatial relationships and contextual information from 
input images enables DETR to achieve state-of-the-art results in object detection tasks while offering a more 
streamlined and interpretable architecture compared to traditional CNN-based approaches. 

 
2.3 CycleGAN 

Generative adversarial networks (GANs) have revolutionized the field of image generation, enabling the 
creation of realistic synthetic images from random noise. CycleGAN extends this concept to the domain of 
unpaired image-to-image translation, allowing for the transformation of images from one domain to another 
without the need for paired training data [10]. 

The core idea behind CycleGAN is the cycle consistency loss, which enforces the translated images to be 
consistent when translated back to the original domain. This ensures that the transformation process captures 
meaningful semantic features while preserving essential characteristics of the input images. CycleGAN has 
been widely adopted for various tasks, including style transfer, image super-resolution, and domain adaptation, 
making it a versatile tool for data augmentation and image manipulation tasks. 

 

 
Figure 3. CycleGAN Network 

CycleGAN, a variant of Generative Adversarial Networks (GANs), is renowned for its ability to perform 
unsupervised image-to-image translation between two domains without requiring paired training data. Its 
architecture consists of two main components: a generator and a discriminator as in figure 3. The generator 
learns to map images from one domain to another, while the discriminator aims to distinguish between 
translated images and real images from the target domain [11][12]. What sets CycleGAN apart is its 
incorporation of cycle-consistency loss, which enforces the condition that translating an image from one 
domain to another and back should result in the original image. This constraint encourages the model to learn 
meaningful mappings between domains while preserving essential visual attributes, leading to high-quality 
translations even in the absence of direct supervision. 
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The standout ability of CycleGAN lies in its capacity to learn domain mappings in an unsupervised manner, 
making it highly versatile for various image translation tasks. Whether it's transforming photographs into 
artistic renditions, converting images between different seasons or landscapes, or even altering attributes like 
style or age, CycleGAN excels at capturing complex relationships between domains and producing realistic 
results. Its ability to learn without paired training data offers significant advantages in scenarios where 
collecting such data may be challenging or impractical. Additionally, CycleGAN's architecture is modular and 
adaptable, allowing for easy extension and customization to suit specific applications and datasets. This 
combination of versatility, effectiveness, and ease of use has cemented CycleGAN as a powerful tool for image 
manipulation and synthesis in both research and practical applications.  

 
2.4 Dataset: VinDr-CSR 

In recent years, the development of machine learning algorithms for the detection and localization of chest 
abnormalities in X-ray scans has faced significant challenges due to the limited availability of annotated 
datasets. Existing chest X-ray datasets typically provide labels for findings without specifying their precise 
locations on the radiographs, hindering the progress of automated diagnosis systems requiring detailed 
annotations for accurate localization of abnormalities. 

To address this limitation, a large-scale collection of chest X-ray images has been meticulously annotated 
by experienced radiologists, providing researchers with access to a valuable dataset. Consisting of 3076 
images, the data is manually annotated with 14 local labels as in Table 1. Each scan in the training set is 
independently labeled by three radiologists, while a consensus of five radiologists labeled each scan in the test 
set [9]. This meticulous annotation procedure enhances the dataset's quality and enables robust evaluation of 
machine learning models' performance on detecting and localizing chest abnormalities. 

 

Table 1. Dataset Classification 

ID Label 
0 Aortic enlargement 
1 Atelectasis 
2 Calcification 
3 Cardiomegaly 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

Consolidation 
ILD 
Infiltration 
Lung Opacity 
Nodule/Mass 
Other Lesion 
Pleural Effusion 
Pleural Thickening 
Pneumothoras 
Pulmonary Fibrosis 
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3. Experiment Setup and Methodology 
3.1 Setup Environment 

Table 2. System Environment 

Computer Environment Software frame and Library 
GPU: RTX 4090 CUDA Version 12.4 
CPU: AMD Ryzen 9 16-Core Cudnn 8.9 
RAM: 32 GB DDR5 Pytorch 2.2.2 
OS: Windows 11  

 
For this experiment, we used a computational environment optimized for high-performance deep learning 

tasks, providing a robust platform for cutting-edge research and development. Anchored by an RTX 4090 GPU 
with CUDA version 12.4 and CuDNN 8.9, the system utilizes NVIDIA's flagship graphics card for accelerated 
training and inference tasks. Complemented by an AMD Ryzen 9 16-Core CPU and 32 GB of DDR5 RAM, it 
efficiently handles preprocessing, data augmentation, and post-processing operations. Operating on Windows 
11, the system leverages PyTorch 2.2.2, a flexible and scalable deep learning framework, enabling researchers 
and developers to implement advanced neural network architectures and experiment with optimization 
algorithms. Combined, these hardware and software components create a versatile computational environment 
for deep learning research and application development. 

 
3.2 Data Augmentation Scenario 

Using CycleGAN as the data augmentation algorithm, chest scan images are provided as input and undergo 
translation operations from the medical imaging domain to a domain with either higher-contrast colors, 
different color patterns, or color shifts. The differences between the two domains create changes in color, 
texture, and contrast, which can aid in scenarios where there is limited data or insufficient annotations to 
achieve good detection performance. However, excessive data augmentation can lead to overfitting. Therefore, 
data augmentation must be carefully controlled to prevent the network from performing poorly on test data. 

 

 
Figure 4. Data Augmentation 
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With the created augmented data, augmentation is performed by dividing it into 0%, 25%, 50%, and 75% 
augmentation levels. The evaluation scenario for the algorithm without using data augmentation involves 4394 
images divided into 70% for training, 20% for validation, and 10% for testing. This partitioning results in 
training, validation, and test datasets containing 3076, 879, and 439 images, respectively. In cases where data 
augmentation is applied, a percentage of the original images is removed according to the chosen augmentation 
level. Subsequently, the original images are selected for augmentation until they match the dataset size. This 
approach ensures that the evaluation scenario remains aligned with the actual dataset size, enabling meaningful 
comparisons. 
 

Table 3. Data Augmentation Division 

Percentage Augmented Data Total Original Image Total 
0% 0 3076 
25% 769 2307 
50% 1538 1538 
75% 2307 769 

 
3.3 Chest Abnormalities Detection 

In the scenario of chest abnormality detection, evaluation is conducted by training the algorithms under 
original performance settings. YOLOv7 and DETR detectors are employed to assess the capabilities of each 
detector under different data augmentation percentage scenarios. The evaluation involves training the models 
for 100 epochs using pre-trained models provided by the researchers who developed the algorithms. The pre-
training is conducted with optimal and effective parameter settings. 

In detecting abnormalities, each algorithm is executed using its respective pre-trained model. This is done 
to ensure that each algorithm and parameter used are optimal. The comparison is based on the training time 
required, the number of parameters needed, and the Average Precision (AP) value from the validation results. 
The comparative analysis of the two algorithms is determined according to the amount of data augmentation 
in the training scenario. The baseline is established as the training results without using data augmentation by 
each algorithm. 

 

4. Result and Discussion 
Result. YOLOv7 consistently outperforms DETR across all levels of augmented data. Even with 75% 

augmented data, YOLOv7 maintains better performance compared to DETR. Both models exhibit a decrease 
in performance as the amount of augmented data increases, but YOLOv7's performance degrades more 
gracefully compared to DETR. Despite the decrease in performance, YOLOv7 remains more robust to the 
amount of augmented data compared to DETR. 

 

Table 4. YOLOv7 Validation Result 

Augmented Data 
Percentage 

AP50 AP Training 
Time 

#Parameter 

0% 0.4 0.2 4.1 Hours 37.26 M 
25% 0.385 0.188 4.1 Hours 37.26 M 
50% 0.366 0.169 4.1 Hours 37.26 M 
75% 0.08 0.04 4.1 Hours 37.26 M 
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Table 5. DETR Validation Result 

Augmented Data 
Percentage 

AP50 AP Training 
Time 

#Parameter 

0% 0.293 0.135 6 Hours 41.26 M 
25% 0.247 0.091 6 Hours 41.26 M 
50% 0.159 0.071 6 Hours 41.26 M 
75% 0.071 0.038 6 Hours 41.26 M 

 

Analysis. YOLOv7 requires significantly fewer epochs compared to DETR to reach convergence or the 
optimal point for weight optimization. Typically, YOLOv7 reaches convergence within approximately 30 
epochs, whereas DETR requires around 300 epochs to converge effectively. This stark difference in 
convergence speed can be attributed to the architectural differences between the two models. YOLO's 
architecture, particularly its one-stage object detection approach, allows for faster convergence due to its 
simplicity and efficiency in processing. On the other hand, DETR's transformer-based architecture, while 
powerful and capable of capturing global context effectively, requires more epochs to converge due to its 
complexity and the need for longer training to effectively learn the parameters. Therefore, YOLOv7 offers a 
significant advantage in terms of training speed and efficiency compared to DETR. 

The test results demonstrate the impact of data augmentation on the performance of YOLOv7 and DETR 
object detection models. While data augmentation enhances the models' performance initially by providing 
additional diverse training samples, there is a trade-off as the amount of augmented data increases. For 
YOLOv7, with 0% augmented data, the model achieves an AP of 0.4, which gradually decreases to 0.08 with 
75% augmented data. Similarly, for DETR, the AP decreases from 0.293 with 0% augmented data to 0.071 
with 75% augmented data. Although data augmentation improves the models' generalization capabilities 
initially, excessive augmentation can lead to overfitting, resulting in decreased performance on unseen data. 
Thus, the choice of the amount of augmented data requires a balance between improving model performance 
and preventing overfitting, as indicated by the diminishing AP values with increasing augmented data 
percentages. 

 

  

Figure 5. Average Precision Graph 
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5. Conclusion 
In this study, we compared the performance of two leading object detection architectures, YOLOv7 and 

Detection Transformer (DETR), across varying levels of data augmentation using CycleGAN. Our 
experiments on chest scan images within the context of biomedical informatics revealed that YOLOv7 
consistently outperforms DETR across all levels of augmented data. Even with 75% augmented data, YOLOv7 
maintains better performance compared to DETR, with a more graceful degradation in performance as the 
amount of augmented data increases. Additionally, YOLOv7 demonstrates significantly faster convergence, 
requiring approximately 30 epochs compared to DETR's 300 epochs. These findings underscore the superiority 
of YOLOv7 for object detection tasks, especially in scenarios with limited data and when rapid convergence 
is essential. Further research is warranted to explore the generalization capabilities of these models on diverse 
datasets and to optimize training parameters for improved performance and efficiency in real-world 
applications. 
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