• Title/Summary/Keyword: Generated torque

Search Result 430, Processing Time 0.028 seconds

An Investigation on the Effects of Clutch Disk Characteristics for a Passenger Car Driveline (승용차 동력전달계에 대한 클러치 디스크 특성의 영향 고찰)

  • Kim, Young-Heub;Park, Dong-Hoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.3
    • /
    • pp.243-250
    • /
    • 2009
  • The clutch with torsional damper is installed on a passenger car with manual transmission, which not only transmits the power generated by engine to the transmission but also absorbs the shock and vibration from the engine. The torsional damper in the clutch dissipates the torsional vibration energy and eliminates the resonance in the driveline but high damping in the damper causes the increase of the vibration level which is against the comfort and durability. In this study, a dynamic model for the passenger car driveline with manual transmission was developed to investigate the vibration and the effects of characteristics of the driveline. With the dynamic model, the vibration characteristics of driveline were examined by the mode analysis and driving simulation, and the effects of hysteresis torque and spring constant were investigated. The vehicle tests with prototype torsional dampers were preformed and the test results showed good agreements with the simulation.

Analysis of Limitation and Improvement of Degree of Freedom for Brush Tire Model (브러쉬 타이어 모델의 한계점 분석 및 자유도 개선)

  • Kim, Jong-Min;Jung, Samuel;Yoo, Wan-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.7
    • /
    • pp.585-590
    • /
    • 2017
  • Vehicle behavior is determined by forces and a torques generated at the ground contact surface of the tire. Various tire models are used to calculate the forces and torques acting on the tire. The brush model calculates the forces and torques with fewer coefficients than other tire models. However, owing to fewer degrees of freedom in calculating the forces, this model has limitations in precisely expressing measured data. In this study, this problem was addressed by adding the least parameters to the friction coefficient and tire properties of the brush model, and the proposed model was validated.

The Performance Analysis of Otto Cycle Engine by Thermodynamic Second Law (오토 사이클 기관의 열역학 제 2법칙적 성능 해석)

  • 김성수;노승탁
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.94-102
    • /
    • 2001
  • The thermodynamic second law analysis, which means available energy or exergy analysis, for the indicated performance of Otto cycle engine has been carried out. Each operating process of the engine is simplified and modeled into the thermodynamic cycle. The calculation of the lost work and exergy through each process has been done with the thermodynamic relations and experimental data. The experimental data were measured from the test of single cylinder Otto cycle engine which operated at 2500 rpm, WOT(Wide Open Throttle) and MBT(Minimum advanced spark timing for Best Torque) condition with different fuels: gasoline, methanol and mixture of butane-methanol called M90. Experimental data such as cylinder pressure, air and fuel flow rate, exhaust gas temperature, inlet gas temperature and etc. were used for the analysis. The proposed model and procedure of the analysis are verified through the comparison of the work done in the study with experimental results. The calculated results show that the greatest lost work is generated during combustion process. And the lost work during expansion, exhaust, compression and induction process follows in order.

  • PDF

Development of a dynamics analysis model of mechanical system driven by DC motors (DC 모터 구동시스템의 동역학 해석 모델 개발)

  • 김무진;문원규;배대성;박일한;최진환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.497-500
    • /
    • 2002
  • When one is interested in the dynamics of a mechanical system with electric motors, the force generated by the motor is generally considered as only an applied torque or force independent of mechanical state variables such as velocity. For a system operated in non-steady dynamic conditions, however, the usual analysis approach may fail to predict some characteristics in the dynamic behaviors because of electromechanical coupling effects. In this paper, we propose dynamics analysis model in which dc motor dynamics with the electromechanical coupling effects are embedded to mechanical dynamics models. The do motor is modeled based on its equivalent circuit model and included in the dynamics solving algorithm which we developed before, called generalized recursive dynamics formula. The developed dynamic analysis model is effective and realistic for analysis of electromechanical dynamics of a system with do motors. The developed model is evaluated by constructing and simulating the flexible antennas of an artificial satellite driven by do motors.

  • PDF

Modeling and Analysis of a Novel Two-Axis Rotary Electromagnetic Actuator for Fast Steering Mirror

  • Long, Yongjun;Wang, Chunlei;Dai, Xin;Wei, Xiaohui;Wang, Shigang
    • Journal of Magnetics
    • /
    • v.19 no.2
    • /
    • pp.130-139
    • /
    • 2014
  • This paper focuses on the modeling and analysis a novel two-axis rotary normal-stress electromagnetic actuator with compact structure for fast steering mirror (FSM). The actuator has high force density similar to a solenoid, but its torque output is nearly a linear function of both its driving current and rotation angle, showing that the actuator is ideal for FSM. In addition, the actuator is designed with a new cross topology armature and no additional axial force is generated when the actuator works. With flux leakage being involved in the actuator modeling properly, an accurate analytical model of the actuator, which shows the actuator's linear characteristics, is obtained via the commonly used equivalent magnetic circuit method. Finally, numerical simulation is presented to validate the analytical actuator model. It is shown that the analytical results are in a good agreement with the simulation results.

Design and Fabrication of Thin-type Ultrasonic Motor (Thin-type 초음파모터의 설계 및 제작)

  • Kim, Jong-Wook;Jeoung, Sung-Su;Chong, Hyon-Ho;Jun, Ho-Ik;Park, Tae-Gone
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03a
    • /
    • pp.2-4
    • /
    • 2010
  • Nowadays, application fields using piezoelectric ceramics are various. On this paper, Characteristics of thin-type ultrasonic motor generating elliptical displacements has been analyzed by FEM, and then the motor was fabricated. Structure of the motor consists of sixteen ceramic pieces attached elastic body upper and bottom. Principle of the motor is to apply alternative voltages which have 90 phase difference to attached ceramics, and then elliptical displacements is generated at four edges of clastic body. And then rotor is rotated by the elliptical displacements. In case of ceramic thickness 1.5[mm], characteristic of the highest speed was found at 79[kHz]. In case of ceramic thickness 2[mm], Characteristic of the highest speed was observed at 77.5 [kHz]. Consequently, speed and torque of USM were increased linearly with increasing in applied voltage.

  • PDF

A Study on a Novel Flow Control Valve for Wind Power Heat Generation Hydraulic Systems (풍력 열발생 유압 시스템을 위한 새로운 유량제어밸브에 관한 연구)

  • Choi, Sae Ryung;Lee, Ill Yeong;Han, Bong Jun
    • Journal of Drive and Control
    • /
    • v.14 no.1
    • /
    • pp.23-28
    • /
    • 2017
  • A wind power heat generation system that converts wind power directly to heat instead of electric power is considered in this study. The system consists of a wind turbine part and a heat generation part. The heat generation part is materialized by a hydraulic system including a hydraulic pump, a flow control valve, a hydraulic oil tank, etc. The flow control valve primarily converts hydraulic energy generated in the pump to heat energy. It should have a function of overspeed protection under excessive wind speeds. In this study, a novel flow control valve design is proposed for excellent flow control characteristics under excessive pump driving torque (excessive wind speed). The performance of the suggested valve is analyzed using numerical simulation.

Estimation of Load on Ship's Hydraulic Steering Gear (선박 유압 조타장치 부하의 추정)

  • Ji, S.W.;Oh, J.M.;Jeong, E.S.;Kim, B.K.;Lee, I.Y.
    • Journal of Drive and Control
    • /
    • v.12 no.1
    • /
    • pp.15-20
    • /
    • 2015
  • For testing a newly designed ship's steering gear, a steering gear test bench with a steering gear to be tested and a load generation part should be prepared. The load given to the steering gear has to be pertinent to the load generated in a targeted ship. In this study, the authors suggest a process of estimating the load given to steering gears in ships. At first, a test for measuring the load in the steering gear of a real ship was conducted. Then, a process was developed to compute rudder driving torque and force by using basic equations including some empirical equations on ship's steering. The test results and the computation results on the load in the steering gear were compared, As a result, the process suggested in this study for estimating load in ship's steering gears was verified.

Design and Analysis of the Eddy Current Brake with the Winding Change

  • Cho, Sooyoung;Liu, Huai-Cong;Lee, Ju;Lee, Chang-Moo;Go, Sung-Chul;Ham, Sang-Hwan;Woo, Jong-Hyuk;Lee, Hyung-Woo
    • Journal of Magnetics
    • /
    • v.22 no.1
    • /
    • pp.23-28
    • /
    • 2017
  • This paper is a study of the eddy current brake designed to replace the air brake of railway application. The eddy current brake has the advantage of being able to take a high current density compared to the other application because this brake is used for applying brakes to the rolling stock for a shorter amount of time. Also, this braking system has the merit of being able to take a high current density at low speed rather than at high speed, because the heat generated by the low speed operation is less than that of the high speed operation. This paper also presents a method of improving the output torque of the eddy current brake at low speed operation through a change of the winding as well as the basic design.

System Mode and Sensitivity Analysis for Brake Judder Reduction (브레이크 저더 개선을 위한 시스템 모드분석 및 민감도해석)

  • Hwang In-Jin;Park Gyung-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.142-153
    • /
    • 2005
  • The brake judder is a phenomenon that the steering wheel is abnormally vibrating when the car is braked at a high speed. It is classified by the cold and the hot judder. The former is generated due to the initial uneven disk surface and the latter is resulted from the uneven heat spots on disc surface by repeatedly braking. There are two ways to reduce the judder. One is to control vibration by modification of the disk shapes and pad ingredients. The other is to improve modal characteristics of the suspension system. The latter approach is used in this research. In this paper, the real vehicle test and computer simulation are considered to systematically understand the judder phenomenon of the vehicle. The Macpherson strut suspension is employed. Especially, the judder sensitivity is calculated based on design sensitivity analysis. A bush stiffness was reworked and braking test was done to verify the sensitivity result. The judder reduction by the mode control was verified.