Database query and reporting tools, OLAP tools and data mining tools are typical front-end tools in Business Intelligence environment which is able to support gathering, consolidating and analyzing data produced from business operation activities and provide access to the result to enterprise's users. Traditional reporting tools have an advantage of creating sophisticated dynamic reports including SQL query result sets, which look like documents produced by word processors, and publishing the reports to the Web environment, but data source for the tools is limited to RDBMS. On the other hand, OLAP tools and data mining tools have an advantage of providing powerful information analysis functions on each own way, but built-in visualization components for analysis results are limited to tables or some charts. Thus, this paper presents a system that integrates three typical front-end tools to complement one another for BI environment. Traditional reporting tools only have a query editor for generating SQL statements to bring data from RDBMS. However, the reporting tool presented by this paper can extract data also from OLAP and data mining servers, because editors for OLAP and data mining query requests are added into this tool. Traditional systems produce all documents in the server side. This structure enables reporting tools to avoid repetitive process to generate documents, when many clients intend to access the same dynamic document. But, because this system targets that a few users generate documents for data analysis, this tool generates documents at the client side. Therefore, the tool has a processing mechanism to deal with a number of data despite the limited memory capacity of the report viewer in the client side. Also, this reporting tool has data structure for integrating data from three kinds of data sources into one document. Finally, most of traditional front-end tools for BI are dependent on data source architecture from specific vendor. To overcome the problem, this system uses XMLA that is a protocol based on web service to access to data sources for OLAP and data mining services from various vendors.
The objective of this study was to use remotely sensed data, combined with in situ data, for the assessment of trophic state for Daecheong reservoir. Three Landsat TM(Thematic Mapper) imagery data were processed to portray trophic state conditions. The remotely sensed data and the measured data were obtained on 20 June 1995. Regression models have been developed between the chlorophyll-a concentration and reflectance which was converted to Landsat TM digital data. The regression model was determined based on the correlation coefficient which was higher than 0.7 and was applied to the entire study area to generate a distribution map of chlorophyll-a and trophic state. The equation, providing estimates of chlorophyll-a concentration, represented the year-to-year spatial variation of trophic zones in the reservoir. Satellite remote sensing data derived from Landsat TM had been successfully used for trophic slate mapping in Daecheong reservoir.
Pak, Gijung;Jung, Minjae;Lee, Hansaem;Kim, Deokwoo;Yoon, Jaeyong;Paik, Kyungrock
Journal of Korean Society on Water Environment
/
v.28
no.1
/
pp.38-49
/
2012
In this study, we analyze statistical characteristics of influent water quality in Daejeon waste water treatment plant and apply a stochastic model for data generation. In the analysis, the influent water quality data from year 2003 to 2008, except for year 2006, are used. Among water quality variables, we find strong correlations between BOD and T-N; T-N and T-P; BOD and T-P; $COD_{Mn}$ and T-P; and BOD and $COD_{Mn}$. We also find that different water quality variables follow different theoretical probability distribution functions, which also depends on whether the seasonal cycle is removed. Finally, we generate the influent water quality data using the multi-season 1st Markov model (Thomas-Fiering model). With model parameters calibrated for the period 2003~2005, the generated data for 2007~2008 are well compared with observed data showing good agreement in general. BOD and T-N are underestimated by the stochastic model. This is mainly due to the statistical difference in observed data itself between two periods of 2003~2005 and 2007~2008. Therefore, we expect the stochastic model can be applied with more confidence in the case that the data follows stationary pattern.
Wind vector information over the ocean is currently obtained using multiple beam scatterometer data. The scatterometers on ERS-1/2 generate wind vector information with a spatial resolution of 50km and accuracies of $\pm$2m/s in wind speed and $\pm$20$^{\circ}$ in wind direction. Synthetic aperture radar (SAR) data over the ocean have the potential of providing wind vector information independent of weather conditions with finer resolution. Finer resolution wind vector information can often be useful particularly in coastal regions where the scatterometer wind information is often corrupted because of the lower resolution system characteristics which is often contaminated by the signal returns from the coastal areas or ice in the case of arctic environments. In this paper we tested CMOD_4 and CMOD_IFR2 algorithms for extracting the wind vector from SAR data. These algorithms require precise estimation of normalized radar cross-section and wind direction from the SAR data and the local incidence angle. The CMOD series algorithms were developed for the C-band, VV-Polarized SAR data, typically for the ERS SAR data. Since RADARSAT operates at the same C-band but with HH-Polarization, the CMOD series algorithms should not be used directly. As a preliminary approach of resolving with this problem, we applied the polarization ratio between the HH and VV polarizations in the wind vectors estimation. Two test areas, one in front of Inchon and several sites around Jeju island were selected and investigated for wind vector estimation. The new results were compared with the wind vectors obtained from CMOD algorithms. The wind vector results agree well with the observed wind speed data. However the estimation of wind direction agree with the observed wind direction only when the wind speed is greater than approximately 3.0m/s.
As an useful application in broadcasting services, the targeting service has been mainly studied to improve the service satisfaction and user usage in various media service environments based on user profile, preferences, and usage history. Targeting service is expanding its domain from broadcasting contents to interstitial contents and from fixed TV devices to mobile devices. Service data also include advertisement data, coupon, and information about media contents as well as simple broadcasting data. In this paper, the targeting data service is designed and implemented on articles, advertisement and broadcasting information on the basis of the user information. To adapt this to web-based media contents, information on user profile, preferences, and usage history is newly defined on the basis of the user metadata developed in TV-Anytime Forum and the user information defined in OpenSocial. The targeting data service is implemented to generate user preferences information and usage history pattern based on the similarity among user preference, contents information, and usage history. Based on performance evaluation, we prove that the proposed targeting data service is effectively applicable to web-based media contents as well as broadcasting service.
KIPS Transactions on Software and Data Engineering
/
v.2
no.7
/
pp.451-460
/
2013
In order to achieve high test coverage, it is usual to generate test data using various techniques including symbolic execution, data flow analysis or constraints solving. Recently, a technique for automated test data generation that fulfills high coverage effectively without those sophisticated means has been proposed. However, the technique shows its weakness in the generation of test data that leads to high coverage for programs having branch conditions where different memory locations are binded during execution. For certain programs with flag conditions, in particular, high coverage can not be achieved because specific branches are not executed. To address the problem, this paper presents dynamic branch coverage criteria and a test data generation technique based on the notion of dynamic branch. It is shown that the proposed technique compared to the previous approach is more effective by conducting experiments involving programs with flag conditions.
Yoo Hwan Hee;Kim Seong Sam;Chung Dong Ki;Hong Jae Min
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.23
no.3
/
pp.261-272
/
2005
3D models in urban areas are essential for a variety of applications, such as virtual visualization, GIS, and mobile communications. LIDAR (Light Detection and Ranging) is a relatively new technology for obtaining Digital Terrain Models (DTM) of the earth's surface since manual 3D data reconstruction is very costly and time consuming. In this paper an approach to extract ground and non-ground points data from LIDAR data by using filtering is presented and the accuracy for generating DTM from ground points data is evaluated. Numerous filter algorithms have been developed to date. To determine the performance of filtering, we selected three filters which are based on the concepts for height difference, slope, and morphology, and also were applied two different data acquired from high raised apartments areas and low house areas. From the results it has been found that the accuracy for generating DTM from LIDAR data are 0.16 m and 0.59 m in high raised apartments areas and low house areas respectively. We expect that LIDAR data is used to generate the accurate DTM in urban areas.
Journal of Korean Society for Atmospheric Environment
/
v.29
no.6
/
pp.838-848
/
2013
The Community Multiscale Air Quality (CMAQ) model is capable of providing high quality atmospheric chemistry profiles through the utilization of high-resolution meteorology and emissions data. However, it cannot simulate air quality accurately if input data are not appropriate and reliable. One of the most important inputs required by CMAQ is the air pollutants emissions, which determines air pollutants concentrations during the simulation. For the CMAQ simulation of Korean peninsula, we, in general, use the Korean National Emission Inventory data which are estimated by Clean Air Policy Support System (CAPSS). However, since they are not provided by model-ready emission data, we should convert CAPSS emissions into model-ready data. The SMOKE is the emission model we used in this study to generate CMAQ-ready emissions. Because processing the emissions data is very monotonous and tedious work, we have developed CAPSS2SMOKE program to convert CAPSS emissions into SMOKE-ready data with ease and effective. CAPSS2SMOKE program consists of many codes and routines such as source classification code, $PM_{10}$ to $PM_{2.5}$ ratio code, map projection conversion routine, spatial allocation routine, and so on. To verify the CAPSS2SMOKE program, we have run SMOKE using the CAPSS 2009 emissions and found that the SMOKE results inherits CAPSS emissions quite well.
As network systems are developed rapidly and network architectures are more complex than before, it needs to use PBNM(Policy-Based Network Management) in network system. Generally, architecture of the PBNM consists of two hierarchical layers: management layer and enforcement layer. A security policy server in the management layer should be able to generate new policy, delete, update the existing policy and decide the policy when security policy is requested. And the security policy server should be able to analyze and manage the alert messages received from Policy enforcement system in the enforcement layer for the available information. In this paper, we propose an alert analyzer using data mining. First, in the framework of the policy-based network security management, we design and implement an alert analyzes that analyzes alert data stored in DBMS. The alert analyzer is a helpful system to manage the fault users or hosts. Second, we implement a data mining system for analyzing alert data. The implemented mining system can support alert analyzer and the high level analyzer efficiently for the security policy management. Finally, the proposed system is evaluated with performance parameter, and is able to find out new alert sequences and similar alert patterns.
Although one can easily generate real-world 3D mesh data using a 3D printer or a depth camera, the generated data inevitably includes unnecessary noise. Therefore, mesh denoising is essential to obtain intact 3D mesh data. However, conventional mathematical denoising methods require preprocessing and often eliminate some important features of the 3D mesh. To address this problem, this paper proposes a deep learning based 3D mesh denoising method. Specifically, we propose a convolution-based autoencoder model consisting of an encoder and a decoder. The convolution operation applied to the mesh data performs denoising considering the relationship between each vertex constituting the mesh data and the surrounding vertices. When the convolution is completed, a sampling operation is performed to improve the learning speed. Experimental results show that the proposed autoencoder model produces faster and higher quality denoised data than the conventional methods.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.