• Title/Summary/Keyword: Generate Data

Search Result 3,066, Processing Time 0.03 seconds

Prediction equations for digestible and metabolizable energy concentrations in feed ingredients and diets for pigs based on chemical composition

  • Sung, Jung Yeol;Kim, Beob Gyun
    • Animal Bioscience
    • /
    • v.34 no.2
    • /
    • pp.306-311
    • /
    • 2021
  • Objective: The objectives were to develop prediction equations for digestible energy (DE) and metabolizable energy (ME) of feed ingredients and diets for pigs based on chemical composition and to evaluate the accuracy of the equations using in vivo data. Methods: A total of 734 data points from 81 experiments were employed to develop prediction equations for DE and ME in feed ingredients and diets. The CORR procedure of SAS was used to determine correlation coefficients between chemical components and energy concentrations and the REG procedure was used to generate prediction equations. Developed equations were tested for the accuracy according to the regression analysis using in vivo data. Results: The DE and ME in feed ingredients and diets were most negatively correlated with acid detergent fiber or neutral detergent fiber (NDF; r = -0.46 to r = -0.67; p<0.05). Three prediction equations for feed ingredients reflected in vivo data well as follows: DE = 728+0.76×gross energy (GE)-25.18×NDF (R2 = 0.64); ME = 965+0.66×GE-24.62×NDF (R2 = 0.60); ME = 1,133+0.65×GE-29.05×ash-23.17×NDF (R2 = 0.67). Conclusion: In conclusion, the equations suggested in the current study would predict energy concentration in feed ingredients and diets.

Efficient mutual authentication and key distribution protocol for cdma2000 packet data service (cdma2000 패킷 데이터 서비스를 위한 효율적인 상호 인증과 키 분배 프로토콜)

  • 신상욱;류희수
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.13 no.2
    • /
    • pp.107-114
    • /
    • 2003
  • In this paper, we propose an efficient mutual authentication and key distribution protocol for cdma2000 packet data service which uses Mobile U access method with DIAMETER AAA(Authentication, Authorization and Accounting) infrastructure. The proposed scheme provides an efficient mutual authentication between MN(Mobile Node) and AAAH(home AAA server), and a secure session-key distribution among Mobile If entities. The proposed protocol improves the efficiency of DIAMETER AAA and satisfies the security requirements for authentication and key distribution protocol. Also, the key distributed by the proposed scheme can be used to generate keys for packet data security over 1xEV-DO wireless interface, in order to avoid a session hijacking attack for 1xEV-DO packet data service.

Class Specific Autoencoders Enhance Sample Diversity

  • Kumar, Teerath;Park, Jinbae;Ali, Muhammad Salman;Uddin, AFM Shahab;Bae, Sung-Ho
    • Journal of Broadcast Engineering
    • /
    • v.26 no.7
    • /
    • pp.844-854
    • /
    • 2021
  • Semi-supervised learning (SSL) and few-shot learning (FSL) have shown impressive performance even then the volume of labeled data is very limited. However, SSL and FSL can encounter a significant performance degradation if the diversity gap between the labeled and unlabeled data is high. To reduce this diversity gap, we propose a novel scheme that relies on an autoencoder for generating pseudo examples. Specifically, the autoencoder is trained on a specific class using the available labeled data and the decoder of the trained autoencoder is then used to generate N samples of that specific class based on N random noise, sampled from a standard normal distribution. The above process is repeated for all the classes. Consequently, the generated data reduces the diversity gap and enhances the model performance. Extensive experiments on MNIST and FashionMNIST datasets for SSL and FSL verify the effectiveness of the proposed approach in terms of classification accuracy and robustness against adversarial attacks.

Machine Learning of GCM Atmospheric Variables for Spatial Downscaling of Precipitation Data

  • Sunmin Kim;Masaharu Shibata;YasutoTachikawa
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.26-26
    • /
    • 2023
  • General circulation models (GCMs) are widely used in hydrological prediction, however their coarse grids make them unsuitable for regional analysis, therefore a downscaling method is required to utilize them in hydrological assessment. As one of the downscaling methods, convolutional neural network (CNN)-based downscaling has been proposed in recent years. The aim of this study is to generate the process of dynamic downscaling using CNNs by applying GCM output as input and RCM output as label data output. Prediction accuracy is compared between different input datasets, and model structures. Several input datasets with key atmospheric variables such as precipitation, temperature, and humidity were tested with two different formats; one is two-dimensional data and the other one is three-dimensional data. And in the model structure, the hyperparameters were tested to check the effect on model accuracy. The results of the experiments on the input dataset showed that the accuracy was higher for the input dataset without precipitation than with precipitation. The results of the experiments on the model structure showed that substantially increasing the number of convolutions resulted in higher accuracy, however increasing the size of the receptive field did not necessarily lead to higher accuracy. Though further investigation is required for the application, this paper can contribute to the development of efficient downscaling method with CNNs.

  • PDF

Factors Influencing Loyalty to Buying and Selling Food Products through E-Marketplace in Thailand

  • Seksan WERASUK;Kittipol WISAENG
    • Journal of Distribution Science
    • /
    • v.21 no.9
    • /
    • pp.1-11
    • /
    • 2023
  • Purpose: This study focuses on developing a structural equation model of variables influencing loyalty to buying and selling food products through e-marketplaces in Thailand. The variables investigated comprised food attributes, online system attributes, marketing innovations, attitudes, and satisfaction. Research design, data and methodology: An online questionnaire was used to collect data from a sample group (200 buyers and 200 sellers) using quota sampling. The data were analyzed using the structural equation model. Results: The developed structural equation model was consistent with the empirical data. Factors in the model could explain 40.1% of the variance in loyalty to buying and selling food products through e-marketplaces. Food attributes and online system attributes influenced satisfaction directly. Online system attributes, market innovation, and attitudes directly influenced loyalty. The developed model had no variation between groups of buyers and sellers. Conclusions: This research demonstrated the causal factors leading to consumer loyalty to buying and selling food products through e-marketplaces. The research findings help e-marketplace providers manage factors of buying and selling to comply with the needs of buyers and sellers, which will increase the number of buyers and sellers, help generate long-term profits for service providers, and increase the country's financial value.

A Study on the Construction and Evaluation of Intrusion Scenarios Based on 3D LiDAR Data (삼차원 라이더 데이터 기반의 침입 시나리오 구축 및 평가 연구)

  • Lee, Yoon-Yim;Lee, Eun-Seok;Noh, Hee-Jeon;Lee, Sung-Hyun;Kim, Young-Chul
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.131-132
    • /
    • 2022
  • We generate classifications and scenarios for intrusions based on 3D LiDAR Data. Research was conducted to analyze and diversify various actual intrusion cases to establish a system that can recognize objects and identify and guard data on intrusion. By generating and simulating basic scenarios for cars, people, animals, natural objects and etc, we create a classification scheme necessary to build and evaluate systems for intrusion. Based on the finally constructed scenario, we add variables for vehicles and surrounding objects to diversify scenarios, and lay the foundation for building accurate and automated alerting systems for future intrusions.

  • PDF

Robust Sentiment Classification of Metaverse Services Using a Pre-trained Language Model with Soft Voting

  • Haein Lee;Hae Sun Jung;Seon Hong Lee;Jang Hyun Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.9
    • /
    • pp.2334-2347
    • /
    • 2023
  • Metaverse services generate text data, data of ubiquitous computing, in real-time to analyze user emotions. Analysis of user emotions is an important task in metaverse services. This study aims to classify user sentiments using deep learning and pre-trained language models based on the transformer structure. Previous studies collected data from a single platform, whereas the current study incorporated the review data as "Metaverse" keyword from the YouTube and Google Play Store platforms for general utilization. As a result, the Bidirectional Encoder Representations from Transformers (BERT) and Robustly optimized BERT approach (RoBERTa) models using the soft voting mechanism achieved a highest accuracy of 88.57%. In addition, the area under the curve (AUC) score of the ensemble model comprising RoBERTa, BERT, and A Lite BERT (ALBERT) was 0.9458. The results demonstrate that the ensemble combined with the RoBERTa model exhibits good performance. Therefore, the RoBERTa model can be applied on platforms that provide metaverse services. The findings contribute to the advancement of natural language processing techniques in metaverse services, which are increasingly important in digital platforms and virtual environments. Overall, this study provides empirical evidence that sentiment analysis using deep learning and pre-trained language models is a promising approach to improving user experiences in metaverse services.

Automatic Poster Generation System Using Protagonist Face Analysis

  • Yeonhwi You;Sungjung Yong;Hyogyeong Park;Seoyoung Lee;Il-Young Moon
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.4
    • /
    • pp.287-293
    • /
    • 2023
  • With the rapid development of domestic and international over-the-top markets, a large amount of video content is being created. As the volume of video content increases, consumers tend to increasingly check data concerning the videos before watching them. To address this demand, video summaries in the form of plot descriptions, thumbnails, posters, and other formats are provided to consumers. This study proposes an approach that automatically generates posters to effectively convey video content while reducing the cost of video summarization. In the automatic generation of posters, face recognition and clustering are used to gather and classify character data, and keyframes from the video are extracted to learn the overall atmosphere of the video. This study used the facial data of the characters and keyframes as training data and employed technologies such as DreamBooth, a text-to-image generation model, to automatically generate video posters. This process significantly reduces the time and cost of video-poster production.

Utilizing Machine Learning Algorithms for Recruitment Predictions of IT Graduates in the Saudi Labor Market

  • Munirah Alghamlas;Reham Alabduljabbar
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.3
    • /
    • pp.113-124
    • /
    • 2024
  • One of the goals of the Saudi Arabia 2030 vision is to ensure full employment of its citizens. Recruitment of graduates depends on the quality of skills that they may have gained during their study. Hence, the quality of education and ensuring that graduates have sufficient knowledge about the in-demand skills of the market are necessary. However, IT graduates are usually not aware of whether they are suitable for recruitment or not. This study builds a prediction model that can be deployed on the web, where users can input variables to generate predictions. Furthermore, it provides data-driven recommendations of the in-demand skills in the Saudi IT labor market to overcome the unemployment problem. Data were collected from two online job portals: LinkedIn and Bayt.com. Three machine learning algorithms, namely, Support Vector Machine, k-Nearest Neighbor, and Naïve Bayes were used to build the model. Furthermore, descriptive and data analysis methods were employed herein to evaluate the existing gap. Results showed that there existed a gap between labor market employers' expectations of Saudi workers and the skills that the workers were equipped with from their educational institutions. Planned collaboration between industry and education providers is required to narrow down this gap.

Forest Vertical Structure Mapping from Bi-Seasonal Sentinel-2 Images and UAV-Derived DSM Using Random Forest, Support Vector Machine, and XGBoost

  • Young-Woong Yoon;Hyung-Sup Jung
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.2
    • /
    • pp.123-139
    • /
    • 2024
  • Forest vertical structure is vital for comprehending ecosystems and biodiversity, in addition to fundamental forest information. Currently, the forest vertical structure is predominantly assessed via an in-situ method, which is not only difficult to apply to inaccessible locations or large areas but also costly and requires substantial human resources. Therefore, mapping systems based on remote sensing data have been actively explored. Recently, research on analyzing and classifying images using machine learning techniques has been actively conducted and applied to map the vertical structure of forests accurately. In this study, Sentinel-2 and digital surface model images were obtained on two different dates separated by approximately one month, and the spectral index and tree height maps were generated separately. Furthermore, according to the acquisition time, the input data were separated into cases 1 and 2, which were then combined to generate case 3. Using these data, forest vetical structure mapping models based on random forest, support vector machine, and extreme gradient boost(XGBoost)were generated. Consequently, nine models were generated, with the XGBoost model in Case 3 performing the best, with an average precision of 0.99 and an F1 score of 0.91. We confirmed that generating a forest vertical structure mapping model utilizing bi-seasonal data and an appropriate model can result in an accuracy of 90% or higher.