• Title/Summary/Keyword: Generalized Displacement

Search Result 166, Processing Time 0.023 seconds

Damage index based seismic risk generalization for concrete gravity dams considering FFDI

  • Nahar, Tahmina T.;Rahman, Md M.;Kim, Dookie
    • Structural Engineering and Mechanics
    • /
    • v.78 no.1
    • /
    • pp.53-66
    • /
    • 2021
  • The determination of the damage index to reveal the performance level of a structure can constitute the seismic risk generalization approach based on the parametric analysis. This study implemented this concept to one kind of civil engineering structure that is the concrete gravity dam. Different cases of the structure exhibit their individual responses, which constitute different considerations. Therefore, this approach allows the parametric study of concrete as well as soil for evaluating the seismic nature in the generalized case. To ensure that the target algorithm applicable to most of the concrete gravity dams, a very simple procedure has been considered. In order to develop a correlated algorithm (by response surface methodology; RSM) between the ground motion and the structural property, randomized sampling was adopted through a stochastic method called half-fractional central composite design. The responses in the case of fluid-foundation-dam interaction (FFDI) make it more reliable by introducing the foundation as being bounded by infinite elements. To evaluate the seismic generalization of FFDI models, incremental dynamic analysis (IDA) was carried out under the impacts of various earthquake records, which have been selected from the Pacific Earthquake Engineering Research Center data. Here, the displacement-based damage indexed fragility curves have been generated to show the variation in the seismic pattern of the dam. The responses to the sensitivity analysis of the various parameters presented here are the most effective controlling factors for the concrete gravity dam. Finally, to establish the accuracy of the proposed approach, reliable verification was adopted in this study.

A novel coupled finite element method for hydroelastic analysis of FG-CNTRC floating plates under moving loads

  • Nguyen, Vu X.;Lieu, Qui X.;Le, Tuan A.;Nguyen, Thao D.;Suzuki, Takayuki;Luong, Van Hai
    • Steel and Composite Structures
    • /
    • v.42 no.2
    • /
    • pp.243-256
    • /
    • 2022
  • A coupled finite element method (FEM)-boundary element method (BEM) for analyzing the hydroelastic response of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) floating plates under moving loads is firstly introduced in this article. For that aim, the plate displacement field is described utilizing a generalized shear deformation theory (GSDT)-based FEM, meanwhile the linear water-wave theory (LWWT)-relied BEM is employed for the fluid hydrodynamic modeling. Both computational domains of the plate and fluid are coincidentally discretized into 4-node Hermite elements. Accordingly, the C1-continuous plate element model can be simply captured owing to the inherent feature of third-order Hermite polynomials. In addition, this model is also completely free from shear correction factors, although the shear deformation effects are still taken into account. While the fluid BEM can easily handle the free surface with a lower computational effort due to its boundary integral performance. Material properties through the plate thickness follow four specific CNT distributions. Outcomes gained by the present FEM-BEM are compared with those of previously released papers including analytical solutions and experimental data to validate its reliability. In addition, the influences of CNT volume fraction, different CNT configurations, water depth, and load speed on the hydroelastic behavior of FG-CNTRC plates are also examined.

Buckling behaviors of FG porous sandwich plates with metallic foam cores resting on elastic foundation

  • Abdelkader, Tamrabet;Belgacem, Mamen;Abderrahmane, Menasria;Abdelhakim, Bouhadra;Abdelouahed, Tounsi;Mofareh Hassan, Ghazwani;Ali, Alnujaie;S.R., Mahmoud
    • Structural Engineering and Mechanics
    • /
    • v.85 no.3
    • /
    • pp.289-304
    • /
    • 2023
  • The main objective of this paper is to study the effect of porosity on the buckling behavior of thick functionally graded sandwich plate resting on various boundary conditions under different in-plane loads. The formulation is made for a newly developed sandwich plate using a functional gradient material based on a modified power law function of symmetric and asymmetric configuration. Four different porosity distribution are considered and varied in accordance with material propriety variation in the thickness direction of the face sheets of sandwich plate, metal foam also is considered in this study on the second model of sandwich which containing metal foam core and FGM face sheets. New quasi-3D high shear deformation theory is used here for this investigate; the present kinematic model introduces only six variables with stretching effect by adopting a new indeterminate integral variable in the displacement field. The stability equations are obtained by Hamilton's principle then solved by generalized solution. The effect of Pasternak and Winkler elastic foundations also including here. the present model validated with those found in the open literature, then the impact of different parameters: porosities index, foam cells distribution, boundary conditions, elastic foundation, power law index, ratio aspect, side-to-thickness ratio and different in-plane axial loads on the variation of the buckling behavior are demonstrated.

An integral quasi-3D computational model for the hygro-thermal wave propagation of imperfect FGM sandwich plates

  • Abdelouahed Tounsi;Saeed I. Tahir;Mohammed A. Al-Osta;Trinh Do-Van;Fouad Bourada;Abdelmoumen Anis Bousahla;Abdeldjebbar Tounsi
    • Computers and Concrete
    • /
    • v.32 no.1
    • /
    • pp.61-74
    • /
    • 2023
  • This article investigates the wave propagation analysis of the imperfect functionally graded (FG) sandwich plates based on a novel simple four-variable integral quasi-3D higher-order shear deformation theory (HSDT). The thickness stretching effect is considered in the transverse displacement component. The presented formulation ensures a parabolic variation of the transverse shear stresses with zero-stresses at the top and the bottom surfaces without requiring any shear correction factors. The studied sandwich plates can be used in several sectors as areas of aircraft, construction, naval/marine, aerospace and wind energy systems, the sandwich structure is composed from three layers (two FG face sheets and isotropic core). The material properties in the FG faces sheet are computed according to a modified power law function with considering the porosity which may appear during the manufacturing process in the form of micro-voids in the layer body. The Hamilton principle is utilized to determine the four governing differential equations for wave propagation in FG plates which is reduced in terms of computation time and cost compared to the other conventional quasi-3D models. An eigenvalue equation is formulated for the analytical solution using a generalized displacements' solution form for wave propagation. The effects of porosity, temperature, moisture concentration, core thickness, and the material exponent on the plates' dispersion relations are examined by considering the thickness stretching influence.

The Forecasting a Maximum Barbell Weight of Snatch Technique in Weightlifting (역도 인상동작 성공 시 최대 바벨무게 예측)

  • Hah, Chong-Ku;Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.3
    • /
    • pp.143-152
    • /
    • 2005
  • The purpose of this study was to predict the failure or success of the Snatch-lifting trial as a consequence of the stand-up phase simulated in Kane's equation of motion that was effective for the dynamic analysis of multi-segment. This experiment was a case study in which one male athlete (age: 23yrs, height: 154.4cm, weight: 64.5kg) from K University was selected The system of a simulation included a multi-segment system that had one degree of freedom and one generalized coordinate for the shank segment angle. The reference frame was fixed by the Nonlinear Trans formation (NLT) method in order to set up a fixed Cartesian coordinate system in space. A weightlifter lifted a 90kg-barbell that was 75% of subject's maximum lifting capability (120kg). For this study, six cameras (Qualisys Proreflex MCU240s) and two force-plates (Kistler 9286AAs) were used for collecting data. The motion tracks of 11 land markers were attached on the major joints of the body and barbell. The sampling rates of cameras and force-plates were set up 100Hz and 1000Hz, respectively. Data were processed via the Qualisys Track manager (QTM) software. Landmark positions and force-plate amplitudes were simultaneously integrated by Qualisys system The coordinate data were filtered using a fourth-order Butterworth low pass filtering with an estimated optimum cut-off frequency of 9Hz calculated with Andrew & Yu's formula. The input data of the model were derived from experimental data processed in Matlab6.5 and the solution of a model made in Kane's method was solved in Matematica5.0. The conclusions were as follows; 1. The torque motor of the shank with 246Nm from this experiment could lift a maximum barbell weight (158.98kg) which was about 246 times as much as subject's body weight (64.5kg). 2. The torque motor with 166.5 Nm, simulated by angular displacement of the shank matched to the experimental result, could lift a maximum barbell weight (90kg) which was about 1.4 times as much as subject's body weight (64.5kg). 3. Comparing subject's maximum barbell weight (120kg) with a modeling maximum barbell weight (155.51kg) and with an experimental maximum barbell weight (90kg), the differences between these were about +35.7kg and -30kg. These results strongly suggest that if the maximum barbell weight is decided, coaches will be able to provide further knowledge and information to weightlifters for the performance improvement and then prevent injuries from training of weightlifters. It hopes to apply Kane's method to other sports skill as well as weightlifting to simulate its motion in the future study.

Evaluation of the Degenerative Changes of the Distal Intervertebral Discs after Internal Fixation Surgery in Adolescent Idiopathic Scoliosis

  • Dehnokhalaji, Morteza;Golbakhsh, Mohammad Reza;Siavashi, Babak;Talebian, Parham;Javidmehr, Sina;Bozorgmanesh, Mohammadreza
    • Asian Spine Journal
    • /
    • v.12 no.6
    • /
    • pp.1060-1068
    • /
    • 2018
  • Study Design: Retrospective study. Purpose: Lumbar intervertebral disc degeneration is an important cause of low back pain. Overview of Literature: Spinal fusion is often reported to have a good course for adolescent idiopathic scoliosis (AIS). However, many studies have reported that adjacent segment degeneration is accelerated after lumbar spinal fusion. Radiography is a simple method used to evaluate the orientation of the vertebral column. magnetic resonance imaging (MRI) is the method most often used to specifically evaluate intervertebral disc degeneration. The Pfirrmann classification is a well-known method used to evaluate degenerative lumbar disease. After spinal fusion, an increase in stress, excess mobility, increased intra-disc pressure, and posterior displacement of the axis of motion have been observed in the adjacent segments. Methods: we retrospectively secured and analyzed the data of 15 patients (four boys and 11 girls) with AIS who underwent a spinal fusion surgery. We studied the full-length view of the spine (anterior-posterior and lateral) from the X-ray and MRI obtained from all patients before surgery. Postoperatively, another full-length spine X-ray and lumbosacral MRI were obtained from all participants. Then, pelvic tilt, sacral slope, curve correction, and fused and free segments before and after surgery were calculated based on X-ray studies. MRI images were used to estimate the degree to which intervertebral discs were degenerated using Pfirrmann grading system. Pfirrmann grade before and after surgery were compared with Wilcoxon signed rank test. While analyzing the contribution of potential risk factors for the post-spinal fusion Pfirrmann grade of disc degeneration, we used generalized linear models with robust standard error estimates to account for intraclass correlation that may have been present between discs of the same patient. Results: The mean age of the participant was 14 years, and the mean curvature before and after surgery were 67.8 and 23.8, respectively (p<0.05). During the median follow-up of 5 years, the mean degree of the disc degeneration significantly increased in all patients after surgery (p<0.05) with a Pfirrmann grade of 1 and 2.8 in the L2-L3 before and after surgery, respectively. The corresponding figures at L3-L4, L4-L5, and L5-S1 levels were 1.28 and 2.43, 1.07 and 2.35, and 1 and 2.33, respectively. The lower was the number of free discs below the fusion level, the higher was the Pfirrmann grade of degeneration (p<0.001). Conversely, the higher was the number of the discs fused together, the higher was the Pfirrmann grade. Conclusions: we observed that the disc degeneration aggravated after spinal fusion for scoliosis. While the degree of degeneration as measured by Pfirrmann grade was directly correlated by the number of fused segments, it was negatively correlated with the number of discs that remained free below the lowermost level of the fusion.