• Title/Summary/Keyword: General shear failure

Search Result 100, Processing Time 0.024 seconds

Strength and Stiffness of Silty Sands with Different Overconsolidation Ratios and Water Contents (과압밀비와 함수비를 고려한 실트질 사질토 지반의 강도 및 변형 특성)

  • Kim Hyun-Ju;Lee Kyoung-Suk;Lee Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.9
    • /
    • pp.53-64
    • /
    • 2005
  • For geotechnical design in practice, soils are, in general, assumed to behave as a linear elastic or perfect plastic material. More realistic geotechnical design, however, should take into account various factors that affect soil behavior in the field, such as non-linearity of stress-strain response, stress history, and water content. In this study, a series of laboratory tests including triaxial and resonant column tests were peformed with sands of various silt contents, relative densities, stress states, OCR and water contents. This aims at investigating effects of various factors that affect strength and stiffness of sands. From the results in this study, it is found that the effect of OCR is significant for the intermediate stress-strain range from the initial to failure, while it may be ignored for the initial stiffness and peak strength. For the effect of water content, it is observed that the initial elastic modulus decreases with increasing water content at lower confining stress and relative density At higher confining stresses, the effect of water content Is found to become small.

Mock-Up Test for Connection of New-Old Concrete of Footing (확대기초의 신구 콘크리트 접합 모형실험)

  • Hwang, Chul-Sung;Yoo, Sung-Won
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.1
    • /
    • pp.66-71
    • /
    • 2018
  • In general, when an existing pier is enlarged and reinforced using a small diameter pile, bonded anchor with deformed reinforcing bars is used to maintain the integrity of the joint. However, in the case of bonded anchors, the performance depends largely on the type of joint material. Nevertheless, unlike mechanical anchors, there is no standard method for designing appropriate design methods and proper performance evaluation. Therefore, in this study, the performance of the anchoring anchor was evaluated by performing a model experiment using the reinforcing bars and anchor reinforcing bars. Experimental results show that the structural performance of the unbonded specimen is the best, and the failure mode is the punching shear failure. The deflection of the end of the member is smaller than that of the unconnected member, The deflection of the connected member is larger than the deflection of the small connected member. As the load increases, the possibility of slippage of the anchor steel or fold connection rebar is high.

Preliminary Study on the Co-relation between the Water Infiltration and the Shallow Slope Failure (지표수 침투와 천부 사면파괴와의 관계에 관한 기초연구)

  • 송원경
    • Geotechnical Engineering
    • /
    • v.14 no.6
    • /
    • pp.33-44
    • /
    • 1998
  • Preliminary study has been conducted to analyse the co-relation between shallow landslides frequently occurring in rainy seasons and the water infiltration into the slope. The change of stress state due to partial saturation of a soil and hence the reduction of its shear strength have been reviewed. The variation of the safety factor of an infinite planar slope in accordance with various water infiltration scenarios has been estimated by limit equilibrium method to explain the mechanism of shallow slope failure. Numerical analysis under the same condition as those of some models dealt with in the previous method has been carried out by using FLAC, a finite difference program, and the results have been compared with the ones obtained by limit equilibrium method. Both results proved to be identical, which implies the ability of the numerical approach to the problems related to the stability analysis of unsaturated slope with the irregular geometry. Further improvement, however, should be made to apply the present analysis procedure to general slopes since it deals with a simple one.

  • PDF

The Study on Cutting-off the Leachate Leakage or Infiltration from Waste Landfill by Wall Mass Constructed in Underground (지중 시공 벽체의 매립장 침출수 차단성 연구)

  • Koh, Yong-IL
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.10
    • /
    • pp.27-34
    • /
    • 2018
  • The effect of cutting-off the leakage was identified by the cement based wall mass constructed in underground, as complete facilities for reinforcement in shear strength of landfill which was subjected to circular failure and for cutting-off the leachate from the costal waste landfill. By (1) visual inspection after underground excavating and (2) compressive strength test for core of underground wall, it could be identified that quality of wall mass constructed in underground was so effective, and by additional test, so as (3) in-situ permeability test in the hole after coring wall mass, (4) analyzing the characteristics of basic components and their profiles through the series of chemical experiments and (5) deciding the general distribution patterns from the chromatograms using GC-MS, it could be identified that watertight and cutting-off the leachate of wall mass constructed in underground was very effective. Therefore, it is concluded that five types of tests suggested in this study can judge the effect of cutting-off the leakage or infiltration of very high concentrated leachate from the waste landfill.

Centrifuge Modelling of Slag Compaction Pile (슬래그 다짐말뚝의 원심모델링)

  • Yoo, Nam-Jae;Park, Byung-Soo;Jeong, Gil-Soo;Lee, Myung-Woog
    • Journal of Industrial Technology
    • /
    • v.22 no.B
    • /
    • pp.191-197
    • /
    • 2002
  • This paper is experimental and numerical research results of performing centrifuge model tests to investigate the geotechnical engineering behavior of slag compaction pile as a substitute of sand compaction pile. In order to find the geotechnical engineering characteristics of the soft clay and the slag used in centrifuge model experiments, basic soil property tests, consolidation test, permeability tests and triaxial compression tests were performed. For centrifuge model tests, slags with changing relative density were used and their bearing capacity, stress concentrations in between pile and soft clay, settlement characteristics, and failure modes were investigated. As a results of centrifuge model tests, it was found that the bearing, capacity of model was increased with increasing density of slag pile and general shear failures were occured. Miniature soil pressure gauges were installed on model pile and soft ground respectively and thus vertical stress acting on them were measured. Stress concentration ratio was found to be in the range of 2.0~3.0. Bearing capacity obtained from the model test with slag was greater than that from the model test with a sand having the identical layout to each other. Thus it was confirmed the slag was an appropriate substitution of pile for sand.

  • PDF

Case study of Cut-slop failure caused by rock anisotropy (암석의 이방성에 기인한 절토사면 붕괴 사례연구)

  • Jung, Young-Kook;Chang, Buhm-Soo;Shin, Chang-Gun;Lee, Yeon-Hee
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.831-837
    • /
    • 2005
  • In this study, a computer program to predict the behavior of laterally loaded single pile and pile groups was developed by using a beam-column analysis in which the soils are modeled as nonlinear springs by a family of p-y curves for subgrade modulus. The special attention was given to the lateral displacement of a single pile and pile groups due to the soil condition and the cap rigidity. The analysis considering group effect was carried out for $2\;{\times}\;2\;and\;3\;{\times}\;3$ pile groups with the pile spacing 3.0B, 4.0B and 5.0B. Based on the results obtained, it is found that the overall distributions of deflection, slope, moment, and shear force in a single pile give a reasonable results irrespective of cap connectivity conditions. It is also found that even though there are some deviations in deflection prediction compared with the observed ones, the prediction by present analysis simulates much better the general trend observed by the centrifuge tests than the numerical solution predicted by PIGLET.

  • PDF

A total strain-based hysteretic material model for reinforced concrete structures: theory and verifications

  • Yun, Gun-Jin;Harmon, Thomas G.;Dyke, Shirley J.;So, Migeum
    • Computers and Concrete
    • /
    • v.5 no.3
    • /
    • pp.217-241
    • /
    • 2008
  • In this paper, a total strain-based hysteretic material model based on MCFT is proposed for non-linear finite element analysis of reinforced concrete structures. Although many concrete models have been proposed for simulating behavior of structures under cyclic loading conditions, accurate simulations remain challenging due to uncertainties in materials, pitfalls of crude assumptions of existing models, and limited understanding of failure mechanisms. The proposed model is equipped with a fully generalized hysteresis rule and is formulated for 2D plane stress non-linear finite element analysis. The proposed model has been formulated in a tangent stiffness-based finite element scheme so that it can be used for most general finite element analysis packages. Moreover, it eliminates the need to check that tensile stresses can be transmitted across a crack. The tension stiffening model is a function of the bar orientation and any orientation can be accommodated. The proposed model has been verified with a series of experimental results of 2D RC planar panels. This study also demonstrates how parameters of the proposed model associated with cyclic damage modeling influences the pinched cyclic shear behavior.

Cap truss and steel strut to resist progressive collapse in RC frame structures

  • Zahrai, Seyed Mehdi;Ezoddin, Alireza
    • Steel and Composite Structures
    • /
    • v.26 no.5
    • /
    • pp.635-647
    • /
    • 2018
  • In order to improve the efficiency of the Reinforced Concrete, RC, structures against progressive collapse, this paper proposes a procedure using alternate path and specific local resistance method to resist progressive collapse in intermediate RC frame structures. Cap truss consists of multiple trusses above a suddenly removed structural element to restrain excessive collapse and provide an alternate path. Steel strut is used as a brace to resist compressive axial forces. It is similar to knee braces in the geometry, responsible for enhancing ductility and preventing shear force localization around the column. In this paper, column removals in the critical position at the first story of two 5 and 10-story regular buildings strengthened using steel strut or cap truss are studied. Based on nonlinear dynamic analysis results, steel strut can only decrease vertical displacement due to sudden removal of the column at the first story about 23%. Cap truss can reduce the average vertical displacement and column axial force transferred to adjacent columns for the studied buildings about 56% and 61%, respectively due to sudden removal of the column. In other words, using cap truss, the axial force in the removed column transfers through an alternate path to adjacent columns to prevent local or general failure or to delay the progressive collapse occurrence.

Mechanical and Electrical Failure of ITO Film with Different Shape during Twisting Deformation (비틀림 변형 중 ITO 필름의 시편 형태에 따른 기계적 전기적 파괴 연구)

  • Kwon, Y.Y.;Kim, Byoung-Joon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.4
    • /
    • pp.53-57
    • /
    • 2017
  • The most representative transparent electrode in the modern society is ITO (Indium Tin Oxide). ITO is widely used in general for touch panels and displays due to its high electrical and optical properties. However, in general, mechanical deformation causes deterioration and destruction of device properties because ITO is basically vulnerable to mechanical deformation. Therefore, the in-depth understanding on the stability of ITO film during various mechanical deformations is necessary. In this study, the reliability and mechanical properties ITO sample having different length, width, and area were investigated. The electrical stability was estimated according to electrical resistance change. The stability was dropped as the sample length, and width increased and the sample area decreased. The electrical stability of ITO film was correlated with twisting strain including tensile, compressive and shear stress.

Field Pullout Tests and Stability Evaluation of the Pretension Soil Nailing System (프리텐션 쏘일네일링 시스템의 현장인발시험 및 안정성 평가)

  • Kim, Hong-Taek;Choi, Young-Geun;Park, Si-Sam;Kim, Berm-Suk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.4 no.3
    • /
    • pp.27-40
    • /
    • 2003
  • In the present study, a newly modified soil nailing technology named as the PSN(Pretension Soil Nailing) system is proposed. Effects of various factors related to the design of the pretension soil nailing system, such as the length of a sheathing pipe and the fixed cone, are examined throughout a series of the displacement-controlled field pull-out tests. 9 displacement-controlled field pull-out tests are performed in the present study and the pretension forces are also evaluated based on the measurements. In addition, both short-term and long-term characteristics of pull-out deformations of the newly proposed PSN system are analyzed and compared with those of the general soil nailing system by carrying out the stress-controlled field pull-out tests. A numerical approach is further made to determine a postulated failure surface as well as a minimum safety factors of the proposed PSN system using the shear strength reduction technique and the $FLAC^{2D}$ program. Global minimum safety factors and local safety factors at various excavation stages computed in case of the PSN system are analyzed throughout comparisons with the results expected in case of the general soil nailing system. An efficiency of the PSN system is also dealt with by analyzing the wall-facing deformations and the adjacent ground surface settlements.

  • PDF