• Title/Summary/Keyword: General order kinetics

Search Result 39, Processing Time 0.033 seconds

ANALYSIS OF THE LiF:Mg,Cu,Si TL AND THE LiF:Mg,Cu,P TL GLOW CURVES BY USING GENERAL APPROXIMATION PLUS MODEL

  • Chang, In-Su;Lee, Jung-Il;Kim, Jang-Lyul;Oh, Mi-Ae;Chung, Ki-Soo
    • Journal of Radiation Protection and Research
    • /
    • v.34 no.4
    • /
    • pp.155-164
    • /
    • 2009
  • In this paper, we used computerized glow curve deconvolution (CGCD) software with several models for the simulation of a TL glow curve which was used for analysis. By using the general approximation plus model, parameters values of the glow curve were analyzed and compared with the other models parameters (general approximation, mixed order kinetics, general order kinetics). The LiF:Mg,Cu,Si and the LiF:Mg,Cu,P material were used for the glow curve analysis. And we based on figure of merits (FOM) which was the goodness of the fitting that was monitored through the value between analysis model and TLD materials. The ideal value of FOM is 0 which represents a perfect fit. The main glow peak makes the most effect of radiation dose assessment of TLD materials. The main peak of the LiF:Mg,Cu,Si materials has a intensity rate 80.76% of the whole TL glow intensity, and that of LiF:Mg,Cu,P materials has a intensity rate 68.07% of the whole TL glow intensity. The activation energy of LiF:Mg,Cu,Si was analyzed as 2.39 eV by result of the general approximation plus(GAP) model. In the case of mixed order kinetics (MOK), the activation energy was analyzed as 2.29 eV. The activation energy was analyzed as 2.38 eV by the general order kinetics (GOK) model. In the case of LiF:Mg,Cu,P TLD, the activation energy was analyzed as 2.39 eV by result of the GAP model. In the case of MOK, the activation energy was analyzed as 2.55 eV. The activation energy was analyzed as 2.51 eV by the GOK model. The R value means different ratio of retrapping-recombination. The R value of LiF:Mg,Cu,Si TLD main peak analyzed as $1.12\times10^{-6}$ and $\alpha$ value analyzed as $1.0\times10^{-3}$. The R of LiF:Mg,Cu,P TLD analyzed as $7.91\times10^{-4}$, the $\alpha$ value means different ratio of initial thermally trapped electron density-initial trapped electron density (include thermally disconnected trap electrons density). The $\alpha$ value was analyzed as $9.17\times10^{-1}$ which was the difference from LiF:Mg,Cu,Si TLD. The deep trap electron density of LiF:Mg,Cu,Si was higher than the deep trap electron density of LiF:Mg,Cu,P.

pH-Dependent Drug Release from Polymethacrylic Acid Hydrogel Matrix (Polymethacrylic Acid 하이드로겔 매트릭스로부터의 pH 의존성 약물 방출)

  • Kim, Kyung-Chung;Kim, Kil-Soo;Lee, Seung-Jin
    • Journal of Pharmaceutical Investigation
    • /
    • v.19 no.4
    • /
    • pp.179-183
    • /
    • 1989
  • Drug release experiments were performed based on pH-sensitive swelling behaviors of polymethacrylic acid. 5-Fluorouracil as a nonionic model drug revealed release patterns depending solely on pH-dependent swelling kinetics of polymethacrylic acid. In contrast, release of propranolol hydrochloride as a cationic model drug was significantly affected by ionic drug-polymer interaction as well as the swelling kinetics. Accordingly, a zero-order release pattern was obtained at pH 7, which was distinguished from the general matrix type drug release pattern.

  • PDF

Optical Sensitivity of TL Glow Peaks Separated Using Computerized Glow Curve Deconvolution for RTL Quartz

  • Kim, Myung-Jin;Kim, Ki-Bum;Hong, Duk-Geun
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.3
    • /
    • pp.114-119
    • /
    • 2018
  • Background: The retrospective dosimetry using RTL quartz can be improved by information for an optical sensitivity of sample connected with the equivalent dose determination. Materials and Methods: The quartz sample from a volcanic rock of Japan was used. After correcting the thermal quenching effect, RTL peaks of quartz were separated by the CGCD method cooperated with the general order kinetics. The number of overlapped glow peaks were ascertained by the $T_m-T_{stop}$ method. The optical sensitivity was examined by comparing the change of intensity on RTL glow peaks measured after exposure to light from a solar simulator with various illumination times. Results and Discussion: Seven glow peaks appeared to be overlapped on the RTL glow curve. The general order kinetics model was appropriate to separate glow peaks. After exposure to light from a solar simulator from a few minutes to 416 hr, the signals for peaks P4 and P5 decayed following the form of $f(t)=a_1e^{-{\lambda}1t}$, while the signals for peaks P6 and P7 decayed by the form of $f(t) = a_1e^{-{\lambda}1t}+a_2e^{-{\lambda}2t}+a_3e^{-{\lambda}3t}$. Conclusion: For dosimetric peaks, the times taken to reduce the RTL signal to half of its initial value were 70 sec for the peak P4, 54 s for the peak P5, 9,840 sec for the peak P6 and 26,580 sec for the peak P7, respectively. We conclude that the optical sensitivity of peaks P4, and P5 gives much higher than that of peaks P6 and P7.

Influence of VOCs Structure on Catalytic Oxidation Kinetics (휘발성 유기화합물(VOCs)의 촉매산화 전환에서 결합구조의 영향 및 속도특성)

  • 이승범;윤용수;홍인권;이재동
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.4
    • /
    • pp.44-51
    • /
    • 2000
  • The reactivity of a range of volatile organic compounds with differing functional groups observed over 0.5% $Pt/{\gamma}-Al_2O_3$ catalyst. In general, the reactivity pattern observed was alcohols > aromatics > ketones > cycloalkane > alkanes. The deep conversion was increased as reaction temperature was increased. A correlation was found between the reactivity of the individual and the strength of the weakest C-Hbond in structure. The conversion of volatile organic compounds increases in order methanol > benzene > cyclohexane > MEK > n-hexane. That is the effect of differences in total dissociation energy. An apparent zeroth-order kinetics with respect to inlet concentration have been observed. A simple multicomponent model based on two-stage redox model made reasonably good predictions of conversion over the range of parameters studied. thus, the catalytic process was suggested as the new VOCs control technology.

  • PDF

Cure Reactions of Epoxy/Anhydride/(Polyamide Copolymer) Blends

  • Youngson Choe;Kim, Wonho
    • Macromolecular Research
    • /
    • v.10 no.5
    • /
    • pp.259-265
    • /
    • 2002
  • The cure kinetics of blends of epoxy (DGEBA, diglycidyl ether of bisphenol A)/anhydride resin with polyamide copolymer, poly(dimmer acid-co-alkyl polyamine), were studied using differential scanning calorimetry (DSC) under isothermal condition. On increasing the amount of polyamide copolymer in the blends, the reaction rate was increased and the final cure conversion was decreased. Lower values of final cure conversions in the epoxy/(polyamide copolymer) blends indicate that polyamide hinders the cure reaction between the epoxy and the curing agent. The value of the reaction order, m, for the initial autocatalytic reaction was not affected by blending polyamide copolymer with epoxy resin, and the value was approximately 1.3, whereas the reaction order, n, for the general n-th order of reaction was increased by increasing the amount of polyamide copolymer in the blends, and the value increased from 1.6 to 4.0. A diffusion-controlled reaction was observed as the cure conversion increased and the rate equation was successfully analyzed by incorporating the diffusion control term for the epoxy/anhydride/(polyamide copolymer) blends. Complete miscibility was observed in the uncured blends of epoxy/(polyamide copolymer) up to 120 $^{\circ}C$, but phase separations occurred in the early stages of the curing process at higher temperatures than 120 "C. During the curing process, the cure reaction involving the functional group in polyamide copolymer was detected on a DSC thermogram.gram.

Kinetics and Optimization of Dimethyl Carbonate Synthesis by Transesterification using Design of Experiment

  • Lee, Kilwoo;Yoo, Kye Sang
    • Korean Chemical Engineering Research
    • /
    • v.56 no.3
    • /
    • pp.416-420
    • /
    • 2018
  • A comprehensive kinetic study has been conducted on dimethyl carbonate synthesis by transesterification reaction of ethylene carbonate with methanol. An alkali base metal (KOH) was used as catalyst in the synthesis of DMC, and its catalytic ability was investigated in terms of kinetics. The experiment was performed in a batch reactor at atmospheric pressure. The reaction orders, the activation energy and the rate constants were determined for both forward and backward reactions. The reaction order for forward and backward reactions was 0.87 and 2.15, and the activation energy was 12.73 and 29.28 kJ/mol, respectively. Using the general factor analysis in the design of experiments, we analyzed the main effects and interactions according to the MeOH/EC, reaction temperature and KOH concentration. DMC yield with various reaction conditions was presented for all ranges using surface and contour plot. Furthermore, the optimal conditions for DMC yield were determined using response surface method.

Enzyme Kinetics of Multiple Inhibition in the Presence of Two Reversible Inhibitors

  • Han, Moon H.;Seong, Baik L.
    • Bulletin of the Korean Chemical Society
    • /
    • v.3 no.3
    • /
    • pp.122-129
    • /
    • 1982
  • In order to extend our understanding on the multiple inhibition enzyme kinetics, a general equation of an enzyme reaction in the presence of two different reversible inhibitors was derived by what we call "match-box mechanism" under the combined assumption of steady-state and quasi-equilibrium for inhibitor binding. Graphical methods were proposed to analyze the multiple inhibition of an enzyme by any given sets of different inhibitors, i.e., competitive, noncompetitive, and uncompetitive inhibitors. This method not only gives an interaction factor $({\alpha})$ between two inhibitors, but also discerns ${\alpha}_1$ and ${\alpha}_2$ with and without substrate binding, respectively. The factors involved in the dissociation constants of inhibitors can also be evaluated by the present plot. It is also shown that the present kinetic approach can be extended to other forms of activators or hydrogen ions with some modification.

Mechanism of Elimination from (E)-2,4-Dinitrobenzaldehyde O-pivaloyloxime Promoted by $R_2NH/R_2NH_2$+ buffer in 70% MeCN(aq)

  • 조봉래;조남순;정학석;손기남;한만소;편상용
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.12
    • /
    • pp.1301-1304
    • /
    • 1997
  • Elimination reactions of (E)-2,4-dinitrobenzaldehyde O-pivaloyloxime promoted by R2NH/R2NH2+ buffer in 70% MeCN(aq) have been studied kinetically. The reaction exhibited second order kinetics and general base catalysis with Bronsted β=0.45. The Hammett ρ value decreased from 2.3 to 1.6 as the base-solvent system was changed from DBU in MeCN to R2NH/R2NH2+ buffer in 70% MeCN(aq). From these results an E2 mechanism is proposed.

Physicochemical Characteristics of Cephalosporin Derivative, CKD-604 : Stabilization and Solubilization in Aqueous Media (세팔로스포린계 유도체 CKD-604 물성연구 : 수용액중에서의 안정화 및 가용화)

  • Kwon, Soo-Yeon;Shin, Hee-Jong;Kim, Chong-Kook
    • Journal of Pharmaceutical Investigation
    • /
    • v.29 no.3
    • /
    • pp.205-210
    • /
    • 1999
  • To formulate the parenteral delivery of a new cephalosporin derivative, 7-${\beta}$-[(2)-2-(2-arninothiazol-4-yl)-2methoxyiminoacetamido]- 3- [(2,3-cyclopenteno-4-carbamoyl-l-pyridinium)methyl]- 3-cephem-4-carboxylate sulfate( CKD604), the stability and solubility of CKD-604 in various aqueous media were investigated. The degradation kinetics of CKD-604 in aqueous solutions (ionic strength 0.1, pH 1-8) were studied at $37^{\circ}C$. The observed degradation rates followed pseudo first order kinetics. The pH-rate profile exhibited a minimum degradation rate at pH 5. The Arrhenius activation energy was 14.2 kcal/mol in pH 5 buffer solution. Excellent agreement between the cephalosporins' theoretical pH-rate profile and the experimental data indicated that the degradation pathway of CKD-604 could be predicted according to the general pathway of cephalosporins. The solubility of CKD-604 was 8.16 mg/ml at $25^{\circ}C$. To enhance the solubility and adjust the suitable pH, CKD-604 was solubilized by using sodium ascorbate, ascorbic acid and urea. The compositions were obtained to satisfy optimum pH and concentration, and the total amount of additives was several times of the active ingredient, CKD-604.

  • PDF

Kinetics Change of the R-134a Gas Hydrate Formation in Seawater with the Addition of Edible Surfactants (R-134a 가스 하이드레이트 형성 속도에 미치는 식용 계면활성제 첨가의 영향)

  • Jeong, Hui Cheol;Kim, A Ram;Lim, Jun-Heok;Won, Yong Sun
    • Clean Technology
    • /
    • v.22 no.3
    • /
    • pp.154-160
    • /
    • 2016
  • For any conceivable desalination process using the gas hydrate formation, the kinetics has to be one of the most important parameters from the economic point of view. We thus were to improve the kinetics of the R-134a (also known as HFC-134a) gas hydrate formation by using promoters and three different kinds of edible surfactants were selected for the desalination process targeted to produce potable water; κ-carrageenan, lecithin, and polysorbate 80 among anionic, amphoteric, and nonionic surfactants, respectively. Then, the kinetics change of the R-134a hydrate formation was monitored by varying the surfactant concentration. Experimental results demonstrated that the rate of R-134a hydrate formation increases with the addition of edible surfactants in general and the effect as a promotor has an order of polysorbate 80 > κ-carrageenan > lecithin. As a supportive measure, the atomic charges of each surfactant were calculated by using a DFT (density functional theory)-based molecular modeling and the results showed a positive relationship between the promotor effect of each surfactant and the number of oxygens available for hydrogen bonding and the negativity of their atomic charge values.