• Title/Summary/Keyword: General machinery

Search Result 399, Processing Time 0.028 seconds

Numerical simulation of impeller-volute interaction on a centrifugal turbomachinery (임펠러-볼류트 유동간섭이 원심형 터보기계의 성능에 미치는 영향에 관한 수치해석적 연구)

  • Lee, Jae-Doo;Joo, Won-Gu
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.170-178
    • /
    • 1999
  • In general, an impeller of centrifugal turbomachinery is designed at isolated condition without considering the presence of a volute, but when the impeller is operating with its volute, the performance of impeller can be different. This is largely caused by the interaction between the impeller and volute flow fields. The magnitude of distortion is increased as the operating point is away from the design point and, as a result, the interaction between the impeller and volute is stronger. In the present calculation, the flow through the impeller is simulated using coarse grids. The flow within the impeller and the volute is naturally unsteady, but the flow is assumed to be steady across the interface between the volute and impeller flow fields. Under the assumption of steady three-dimensional incompressible turbulent flow, the time averaged N-S equations involving standard k-$\epsilon$ turbulent model was solved by the F.V.M. The calculation results are compared with the experimental results obtained for an industrial fan by Sakai etc. and the Hood agreement is demonstrated. And the effects of the impeller-volute interaction are studied.

  • PDF

Data Acquisition and Processing System for Tractors Field Performance (트랙터의 포장성능평가(圃場性能評價)를 위한 자료수집처리(資料蒐集處理) 시스템의 개발(開發))

  • Ryu, K.H.;Ryuh, Y.S.;Kang, E.;Park, B.S.;Chang, S.K.
    • Journal of Biosystems Engineering
    • /
    • v.10 no.2
    • /
    • pp.19-26
    • /
    • 1985
  • This study was carried out to develop a versatile data acquisition/processing system for overall tractor performance utilizing a NEC PC-8001 microcomputer. The data acquisition system measures drawbar pull and power, wheel torque and axle power, ground speed, wheel slip, fuel flow, and engine speed. The system stores hexadecimal data for these variables in memory. Upon completion of each test run, all hexadecimal data stored in memory are recorded on floppy disc. The data processing system reads in the data collected on floppy disc and interprete them using several graphical and statistical techniques. The system uses the same microcomputer and a dot-matrix printer. The data acquisition system has been installed on a GOLDSTAR 500 tractor (2WD, 50 ps). A field study has shown that tractor performance data can be quickly and easily collected. It also appeared that the data processing system can be used to efficiently analyze the collected data. The data acquisition system has some troublesome in mounting and handling on tractor since it uses a general-purpose computer consisting of several components.

  • PDF

Analysis of Spectral Fatigue Damage of Linear Elastic Systems with Different High Cyclic Loading Cases using Energy Isocline (에너지 등고선을 이용한 고주파 가진 조건들에 따른 선형 시스템의 피로 손상도 분석)

  • Shin, Sung-Young;Kim, Chan-Jung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.11
    • /
    • pp.840-845
    • /
    • 2014
  • Vibration profiles consist of two kinds of pattern, random and harmonic, at general engineering problems and the detailed vibration test mode of a target system is decided by the spectral condition that is exposed under operation. In moving mobility, random responses come generally from road source; whereas the harmonic responses are triggered from rotating machinery parts, such as combustion engine or drive shaft. Different spectral input may accumulate different damage in frequency domain since the accumulated fatigue damage dependent on the pattern of input spectrum in high cyclic loading condition. To evaluate the sensitivity of spectral damage according to different loading conditions, a linear elastic system is introduced to conduct a uniaxial vibration testing. Measured data, acceleration and strain, is analyzed using energy isocline function and then, the calculated fatigue damage is compared by different loading cases, random and harmonic.

A Noise Control of a Floating, Production, Storage and Offloading (FPSO) (부유식 석유생산/저장/하역 선박(FPSO)의 소음예측 및 저감)

  • Kim, Dong-Hae;Ko, Kyung-Eun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.550-553
    • /
    • 2004
  • Recently, the demand for the Floating, Production, Storage, and Offloading facility (FPSO) which has some economic and technical advantages, has increased in offshore oil production areas. The 36,8000 DWT class FPSO was built in Hyundai Heavy Industries and will be installed in Offshore Angola. She dose not have self-propulsion system, but has additional facilities for oil production and positioning system. Main noise sources are contributing to the cabin noise of the accommodation are classified into three classes such as the machinery in the engine room and the deckhouse, HVAC system, and the topside equipments. In general, the noise regulation for the offshore structure is severer than that of the cargo ship and acceptable noise limit of cabin is specified as 45 dB(A). This paper describes the procedure of noise analysis, the countermeasures of noise control, and the measurement results of the quay trial. In order to minimize the noise levels, careful attention have to be paid by the special committee of experts from the initial design stage to the delivery. Proper countermeasures, considering the characteristics of sources and receiver spaces, were applied from the noise prediction and various experiment results. Finally, this ship was successfully delivered with excellent noise properties. The technology to minimize the noise levels for FPSO has been established throughout the construction of this ship.

  • PDF

A new record of the leafhopper genusBatracomorphus Lewis (Hemiptera: Auchenorrhyncha: Cicadellidae) from Korea with a key to the KoreanBatracomorphus species

  • Kim, Eunji;Oh, Sumin;Lee, Gwan-Seok;Lee, Wang-Hee;Jung, Sunghoon
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.3
    • /
    • pp.683-687
    • /
    • 2019
  • The leafhopper genus Batracomorphus Lewis, 1834 belongs to the tribe Batracomorphini (Hemiptera: Auchenorrhyncha: Cicadellidae: Iassinae). B. irroratus Lewis, 1834 was designated as its type species. The genus includes most diverse species in the subfamily Iassinae and contains approximately 350 described species from the world. In Korea, four Batracomorphus species, B. allioni (Turton, 1802), B. punctilliger Anufriev, 1981, B. stigmaticus (Matsumura, 1912), B. viridulus (Melichar, 1902), have been reported in the Korean peninsula. The members of this genus have a similar body size and similar general appearances; thus, it is very difficult to identify clearly without examining the male's genital structures. In this study, Batracomorphus furcatus Li and Wang, 2003 is newly reported from Korea for the first time. This species is previously known to be from China. Herein, the morphological information of B. furcatus Li and Wang is provided with a re-description, photographs of the male dorsal habitus, illustrations of the genitalia structure and distributional records. In addition, a key to the Korean five species of Batracomorphus is presented.

Vibration Measurements in the Mining Industry Applying the Software Install Application to the Kosovo Energy Corporation

  • Luzha, Ibush;Baftiu, Naim;Maloku, Betim;Qarkaxhija, Jusuf
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.8
    • /
    • pp.362-370
    • /
    • 2022
  • The assessment of specific impacts on the environment is a preventive measure for environmental protection which is based on the definition and proposal of measures that can prevent harmful effects, reduce or eliminate them. In the physical sense, vibration is the oscillating motion of an object with the effect of internal or external forces applied to it. People who touch a vibrating surface or object will feel these vibrations. In general, there are two types of vibration exposure. The first are the vibrations of the hands and arms transmitted by the held parts of tools or machinery. The second are whole-body vibrations transmitted from a seat or surface to a motorized car. The risk of injury to workers exposed to vibration varies depending on the size, frequency, type, duration of exposure, and organ affected. The purpose of this paper is to review the measurements of vibrations in the Kosovo Energy Corporation in the mine Sibovc Southwest, where coal with a rotary excavator is exploited and the evaluation of vibrations for working conditions for workers working in that environment and improving working conditions for the measurement of vibrations we have used the device Minimate DS 078, the purpose of such environmental impact assessment is to collect data and predict the harmful impacts on the environment, namely the impact on water, air, soil, life and health of as well as identify and propose measures that could prevent, reduce or eliminate altogether.

Nonlinear thermal post-buckling behavior of graphene platelets reinforced metal foams conical shells

  • Yin-Ping Li;Lei-Lei Gan;Gui-Lin She
    • Structural Engineering and Mechanics
    • /
    • v.91 no.4
    • /
    • pp.383-391
    • /
    • 2024
  • Conical shell is a common engineering structure, which is widely used in machinery, civil and construction fields. Most of them are usually exposed to external environments, temperature is an important factor affecting its performance. If the external temperature is too high, the deformation of the conical shell will occur, leading to a decrease in stability. Therefore, studying the thermal-post buckling behavior of conical shells is of great significance. This article takes graphene platelets reinforced metal foams (GPLRMF) conical shells as the research object, and uses high-order shear deformation theory (HSDT) to study the thermal post-buckling behaviors. Based on general variational principle, the governing equation of a GPLRMF conical shell is deduced, and discretized and solved by Galerkin method to obtain the critical buckling temperature and thermal post-buckling response of conical shells under various influencing factors. Finally, the effects of cone angles, GPLs distribution types, GPLs mass fraction, porosity distribution types and porosity coefficient on the thermal post-buckling behaviors of conical shells are analyzed in detail. The results show that the cone angle has a significant impact on the nonlinear thermal stability of the conical shells.

Study on the Travel and Tractive Characteristics of the Two-Wheel Tractor on the General Slope Land(III)-Tractive Performance of Power Tiller- (동력경운기의 경사지견인 및 주행특성에 관한 연구 (III)-동력경운의 경사지 견인성능-)

  • 송현갑;정창주
    • Journal of Biosystems Engineering
    • /
    • v.3 no.2
    • /
    • pp.35-61
    • /
    • 1978
  • To find out the power tiller's travel and tractive characteristics on the general slope land, the tractive p:nver transmitting system was divided into the internal an,~ external power transmission systems. The performance of power tiller's engine which is the initial unit of internal transmission system was tested. In addition, the mathematical model for the tractive force of driving wheel which is the initial unit of external transmission system, was derived by energy and force balance. An analytical solution of performed for tractive forces was determined by use of the model through the digital computer programme. To justify the reliability of the theoretical value, the draft force was measured by the strain gauge system on the general slope land and compared with theoretical values. The results of the analytical and experimental performance of power tiller on the field may be summarized as follows; (1) The mathematical equation of rolIing resistance was derived as $$Rh=\frac {W_z-AC \[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\] sin\theta_1}} {tan\phi \[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\]+\frac{tan\theta_1}{1}$$ and angle of rolling resistance as $$\theta _1 - tan^1\[ \frac {2T(AcrS_0 - T)+\sqrt (T-AcrS_0)^2(2T)^2-4(T^2-W_2^2r^2)\times (T-AcrS_0)^2 W_z^2r^2S_0^2tan^2\phi} {2(T^2-W_z^2r^2)S_0tan\phi}\] $$and the equation of frft force was derived as$$P=(AC+Rtan\phi)\[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\]cos\phi_1 \ulcorner \frac {W_z \ulcorner{AC\[ [1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\]sin\phi_1 {tan\phi[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\]+ \frac {tan\phi_1} { 1} \ulcorner W_1sin\alpha $$The slip coefficient K in these equations was fitted to approximately 1. 5 on the level lands and 2 on the slope land. (2) The coefficient of rolling resistance Rn was increased with increasing slip percent 5 and did not influenced by the angle of slope land. The angle of rolling resistance Ol was increasing sinkage Z of driving wheel. The value of Ol was found to be within the limits of Ol =2\ulcorner "'16\ulcorner. (3) The vertical weight transfered to power tiller on general slope land can be estim ated by use of th~ derived equation: $$R_pz= \frac {\sum_{i=1}^{4}{W_i}} {l_T} { (l_T-l) cos\alpha cos\beta \ulcorner \bar(h) sin \alpha - W_1 cos\alpha cos\beta$$The vertical transfer weight $R_pz$ was decreased with increasing the angle of slope land. The ratio of weight difference of right and left driving wheel on slop eland,$\lambda= \frac { {W_L_Z} - {W_R_Z}} {W_Z} $, was increased from ,$\lambda$=0 to$\lambda$=0.4 with increasing the angle of side slope land ($\beta = 0^\circ~20^\circ) (4) In case of no draft resistance, the difference between the travelling velocities on the level and the slope land was very small to give 0.5m/sec, in which the travelling velocity on the general slope land was decreased in curvilinear trend as the draft load increased. The decreasing rate of travelling velocity by the increase of side slope angle was less than that by the increase of hill slope angle a, (5) Rate of side slip by the side slope angle was defined as $ S_r=\frac {S_s}{l_s} \times$ 100( %), and the rate of side slip of the low travelling velocity was larger than that of the high travelling velocity. (6) Draft forces of power tiller did not affect by the angular velocity of driving wheel, and maximum draft coefficient occurred at slip percent of S=60% and the maximum draft power efficiency occurred at slip percent of S=30%. The maximum draft coefficient occurred at slip percent of S=60% on the side slope land, and the draft coefficent was nearly constant regardless of the side slope angle on the hill slope land. The maximum draft coefficient occurred at slip perecent of S=65% and it was decreased with increasing hill slope angle $\alpha$. The maximum draft power efficiency occurred at S=30 % on the general slope land. Therefore, it would be reasonable to have the draft operation at slip percent of S=30% on the general slope land. (7) The portions of the power supplied by the engine of the power tiller which were used as the source of draft power were 46.7% on the concrete road, 26.7% on the level land, and 13~20%; on the general slope land ($\alpha = O~ 15^\circ ,\beta = 0 ~ 10^\circ$) , respectively. Therefore, it may be desirable to develope the new mechanism of the external pO'wer transmitting system for the general slope land to improved its performance.l slope land to improved its performance.

  • PDF

Study on the Travel and Tractive Characteristics of the Two-Wheel Tractor on the General Slope Land(Ⅲ)-Tractive Performance of Power Tiller- (동력경운기의 경사지견인 및 주행특성에 관한 연구 (Ⅲ)-동력경운의 경사지 견인성능-)

  • Song, Hyun Kap;Chung, Chang Joo
    • Journal of Biosystems Engineering
    • /
    • v.3 no.2
    • /
    • pp.34-34
    • /
    • 1978
  • To find out the power tiller's travel and tractive characteristics on the general slope land, the tractive p:nver transmitting system was divided into the internal an,~ external power transmission systems. The performance of power tiller's engine which is the initial unit of internal transmission system was tested. In addition, the mathematical model for the tractive force of driving wheel which is the initial unit of external transmission system, was derived by energy and force balance. An analytical solution of performed for tractive forces was determined by use of the model through the digital computer programme. To justify the reliability of the theoretical value, the draft force was measured by the strain gauge system on the general slope land and compared with theoretical values. The results of the analytical and experimental performance of power tiller on the field may be summarized as follows; (1) The mathematical equation of rolIing resistance was derived as $$Rh=\frac {W_z-AC \[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\] sin\theta_1}} {tan\phi \[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\]+\frac{tan\theta_1}{1}$$ and angle of rolling resistance as $$\theta _1 - tan^1\[ \frac {2T(AcrS_0 - T)+\sqrt (T-AcrS_0)^2(2T)^2-4(T^2-W_2^2r^2)\times (T-AcrS_0)^2 W_z^2r^2S_0^2tan^2\phi} {2(T^2-W_z^2r^2)S_0tan\phi}\] $$and the equation of frft force was derived as$$P=(AC+Rtan\phi)\[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\]cos\phi_1 ? \frac {W_z ?{AC\[ [1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\]sin\phi_1 {tan\phi[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\]+ \frac {tan\phi_1} { 1} ? W_1sin\alpha $$The slip coefficient K in these equations was fitted to approximately 1. 5 on the level lands and 2 on the slope land. (2) The coefficient of rolling resistance Rn was increased with increasing slip percent 5 and did not influenced by the angle of slope land. The angle of rolling resistance Ol was increasing sinkage Z of driving wheel. The value of Ol was found to be within the limits of Ol =2? "'16?. (3) The vertical weight transfered to power tiller on general slope land can be estim ated by use of th~ derived equation: $$R_pz= \frac {\sum_{i=1}^{4}{W_i}} {l_T} { (l_T-l) cos\alpha cos\beta ? \bar(h) sin \alpha - W_1 cos\alpha cos\beta$$The vertical transfer weight $R_pz$ was decreased with increasing the angle of slope land. The ratio of weight difference of right and left driving wheel on slop eland,$\lambda= \frac { {W_L_Z} - {W_R_Z}} {W_Z} $, was increased from ,$\lambda$=0 to$\lambda$=0.4 with increasing the angle of side slope land ($\beta = 0^\circ~20^\circ) (4) In case of no draft resistance, the difference between the travelling velocities on the level and the slope land was very small to give 0.5m/sec, in which the travelling velocity on the general slope land was decreased in curvilinear trend as the draft load increased. The decreasing rate of travelling velocity by the increase of side slope angle was less than that by the increase of hill slope angle a, (5) Rate of side slip by the side slope angle was defined as $ S_r=\frac {S_s}{l_s} \times$ 100( %), and the rate of side slip of the low travelling velocity was larger than that of the high travelling velocity. (6) Draft forces of power tiller did not affect by the angular velocity of driving wheel, and maximum draft coefficient occurred at slip percent of S=60% and the maximum draft power efficiency occurred at slip percent of S=30%. The maximum draft coefficient occurred at slip percent of S=60% on the side slope land, and the draft coefficent was nearly constant regardless of the side slope angle on the hill slope land. The maximum draft coefficient occurred at slip perecent of S=65% and it was decreased with increasing hill slope angle $\alpha$. The maximum draft power efficiency occurred at S=30 % on the general slope land. Therefore, it would be reasonable to have the draft operation at slip percent of S=30% on the general slope land. (7) The portions of the power supplied by the engine of the power tiller which were used as the source of draft power were 46.7% on the concrete road, 26.7% on the level land, and 13~20%; on the general slope land ($\alpha = O~ 15^\circ ,\beta = 0 ~ 10^\circ$) , respectively. Therefore, it may be desirable to develope the new mechanism of the external pO'wer transmitting system for the general slope land to improved its performance.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2010 (설비공학 분야의 최근 연구 동향 : 2010년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwa-Taik;Lee, Dae-Young;Kim, Seo-Young;Choi, Jong-Min;Kim, Su-Min;Kwon, Young-Chul;Baik, Yong-Kyu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.6
    • /
    • pp.449-469
    • /
    • 2011
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigerating Engineering during 2010. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) Research trends of thermal and fluid engineering have been surveyed as groups of general thermal and fluid flow, fluid machinery, and new and renewable energy. Various topics were presented in the field of general thermal and fluid flow. Research issues mainly focused on the thermal reliability of axial fan and compressor in the field of fluid machinery. Studies on the design of ground source heat pump systems and solar chemical reactors were executed in the field of new and renewable energy. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics and industrial heat exchangers. Researches on heat transfer characteristics included heat transfer in thermoelectric cooling/power generation systems, combined heat and power systems, carbon nano fluid with PVP, channel filled with metal foam and smoke ventilation in a rescue station of a railroad tunnel. Also the studies on flow boiling of R123/oil mixture in a plain tube bundle and R410A charge amount in an air cooled mini-channel condenser were reported. In the area of industrial heat exchangers, researches on plate heat exchanger, shell and tube heat exchanger, enthalpy exchanger, micro channel PCHE were performed. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics and industrial heat exchangers. Researches on heat transfer characteristics included heat transfer in thermoelectric cooling/power generation systems, combined heat and power systems, carbon nano fluid with PVP, channel filled with metal foam and smoke ventilation in a rescue station of a railroad tunnel. Also the studies on flow boiling of R123/oil mixture in a plain tube bundle and R410A charge amount in an air cooled mini-channel condenser were reported. In the area of industrial heat exchangers, researches on plate heat exchanger, shell and tube heat exchanger, enthalpy exchanger, micro channel PCHE were performed. (3) Refrigeration systems with alternative refrigerants such as hydrocarbons, mixed refrigerants, and CO2 were studied. Performance improvement of refrigeration systems are tried applying various ideas of refrigerant subcooling, dual evaporator with hot gas bypass control and feedforward control. The hybrid solar systems combining the solar collection devices with absorption chillers or compression heat pumps are simulated and studied experimentally as well to improve the understanding and the feasibility for actual applications. (4) Research trend in the field of mechanical building facilities has been found to be mainly focused on field applications rather than performance improvements. Various studies on heating and cooling systems, HVAC facilities, indoor air environments and energy resources were carried to improve the maintenance and management of building service equipments. In the field of heating and cooling systems, papers on a transformer cooling system, a combined heat and power, a slab thermal storage and a heat pump were reported. In the field of HVAC facilities, papers on a cooling load, an ondol and a drying were presented. Also, studies on HVAC systems using unutilized indoor air environments and energy resources such as air curtains, bioviolence, cleanrooms, ventilation, district heating, landfill gas were studied. (5) In the field of architectural environment and energy, studies of various purposes were conducted such as indoor environment, building energy, renewable energy and green building. In particular, renewable energy and building energy-related researches have mainly been studied reflecting the global interest. In addition, many researches which related the domestic green building certification of school building were performed to improve the indoor environment of school.