DOI QR코드

DOI QR Code

Nonlinear thermal post-buckling behavior of graphene platelets reinforced metal foams conical shells

  • Yin-Ping Li (College of Mechanical and Vehicle Engineering, Chongqing University) ;
  • Lei-Lei Gan (College of Mechanical and Vehicle Engineering, Chongqing University) ;
  • Gui-Lin She (College of Mechanical and Vehicle Engineering, Chongqing University)
  • Received : 2023.06.12
  • Accepted : 2024.08.05
  • Published : 2024.08.25

Abstract

Conical shell is a common engineering structure, which is widely used in machinery, civil and construction fields. Most of them are usually exposed to external environments, temperature is an important factor affecting its performance. If the external temperature is too high, the deformation of the conical shell will occur, leading to a decrease in stability. Therefore, studying the thermal-post buckling behavior of conical shells is of great significance. This article takes graphene platelets reinforced metal foams (GPLRMF) conical shells as the research object, and uses high-order shear deformation theory (HSDT) to study the thermal post-buckling behaviors. Based on general variational principle, the governing equation of a GPLRMF conical shell is deduced, and discretized and solved by Galerkin method to obtain the critical buckling temperature and thermal post-buckling response of conical shells under various influencing factors. Finally, the effects of cone angles, GPLs distribution types, GPLs mass fraction, porosity distribution types and porosity coefficient on the thermal post-buckling behaviors of conical shells are analyzed in detail. The results show that the cone angle has a significant impact on the nonlinear thermal stability of the conical shells.

Keywords

Acknowledgement

The authors acknowledge this work is supported by the first-rate talent introduction project of Chongqing University (02090011044159).

References

  1. Alazwari, M.A., Daikh, A.A., Houari, M.S., Tounsi, A. and Eltaher, M.A. (2021), "On static buckling of multilayered carbon nanotubes reinforced composite nanobeams supported on non-linear elastic foundations", Steel Compos. Struct., 40(3), 389-404. https://doi.org/10.12989/scs.2021.40.3.389.
  2. Al-Furjan, M.S.H., Farrokhian, A., Keshtegar, B., Kolahchi, R. and Nguyen-Thoi. T. (2021a), "Dynamic stability control of viscoelastic nanocomposite piezoelectric sandwich beams resting on Kerr foundation based on exponential piezoelasticity theory", Eur. J. Mech.-A/Solid., 86, 104169. https://doi.org/10.1016/j.euromechsol.2020.104169.
  3. Al-Furjan, M.S.H., Farrokhian, A., Keshtegar, B., Kolahchi, R. and Nguyen-Thoi, T. (2021b), "Higher order nonlocal viscoelastic strain gradient theory for dynamic buckling analysis of carbon nanocones", Aerosp. Sci. Technol., 107, 106259. https://doi.org/10.1016/j.ast.2020.106259.
  4. Al-Furjan, M.S.H., Farrokhian, A., Mahmoud, S.R. and Kolahchi, R. (2021c), "Dynamic deflection and contact force histories of graphene platelets reinforced conical shell integrated with magnetostrictive layers subjected to low-velocity impact", Thin Wall. Struct., 163, 107706. https://doi.org/10.1016/j.tws.2021.107706.
  5. Alhaifi, K., Arshid, E. and Khorshidvand, A.R. (2021), "Large deflection analysis of functionally graded saturated porous rectangular plates on nonlinear elastic foundation via GDQM", Steel Compos. Struct., 39(6), 795-809. https://doi.org/10.12989/scs.2021.39.6.795.
  6. Alhaifi, K., Khorshidvand, A.R., Al-Masoudy, M.M., Arshid, E. and Madani, S.H. (2023), "A shooting method for buckling and post-buckling analyses of FGSP circular plates considering various patterns of Pores' placement", Struct. Eng. Mech., 85(3), 419-432. https://doi.org/10.12989/sem.2023.85.3.419.
  7. Alsebai, F., Al Mukahal, F.H.H. and Sobhy, M. (2022), "Semi-analytical solution for Thermo-Piezoelectric bending of FG porous plates reinforced with graphene platelets", Math., 10(21), 4104. http://doi.org/10.3390/math10214104.
  8. Anamagh, M.R. and Bediz, B. (2020), "Free vibration and buckling behavior of functionally graded porous plates reinforced by graphene platelets using spectral Chebyshev approach", Compos. Struct., 253, 112765. http://doi.org/10.1016/j.compstruct.2020.112765.
  9. Anh, V.T.T., Huong, V.T., Nguyen, P.D. and Duc, N.D. (2021), "Nonlinear dynamic analysis of porous graphene platelet-reinforced composite sandwich shallow spherical shells", Mech. Compos. Mater., 57(5), 609-622. http://doi.org/10.1007/s11029-021-09983-w.
  10. Anirudh, B., Zineb, T.B., Polit, O., Ganapathi, M. and Prateek, G. (2019), "Nonlinear bending of porous curved beams reinforced by functionally graded nanocomposite graphene platelets applying an efficient shear flexible finite element approach", Int. J. Nonlin. Mech., 119, 103346. http://doi.org/10.1016/j.ijnonlinmec.2019.103346.
  11. Ansari, R., Torabi, J. and Hasrati, E. (2020), "Postbuckling analysis of axially-loaded functionally graded GPL-reinforced composite conical shells", Thin Wall. Struct., 148, 106594. https://doi.org/10.1016/j.tws.2019.106594.
  12. Arshid, E., Amir, S. and Loghman, A. (2023a), "On the vibrations of FG GNPs-RPN annular plates with piezoelectric/metallic coatings on Kerr elastic substrate considering size dependency and surface stress effects", Acta Mechanica, 234(9), 4035-4076. https://doi.org/10.1007/s00707-023-03593-4.
  13. Arshid, E., Amir, S. and Loghman, A. (2023b), "Thermoelastic vibration characteristics of asymmetric annular porous reinforced with nano-fillers microplates embedded in an elastic medium: CNTs Vs. GNPs", Arch. Civil Mech. Eng., 23(2), 100. https://doi.org/10.1007/s43452-023-00624-8
  14. Avey, M., Fantuzzi, N. and Sofiyev, A. (2022), "On the solution of thermal buckling problem of moderately thick laminated conical shells containing carbon nanotube originating layers", Mater., 15(2), 7427. http://doi.org/10.3390/ma15217427.
  15. Avey, M., Sofiyev, A.H. and Kuruoglu, N. (2022), "Influences of elastic foundations and thermal environments on the thermoelastic buckling of nanocomposite truncated conical shells", Acta Mechanica, 23(2), 685-700. http://doi.org/10.1007/s00707-021-03139-6.
  16. Basha, M., Daikh, A.A., Melaibari, A., Wagih, A., Othman, R., Almitani, K.H., Hamed, M.A., Abdelrahman, A. and Eltaher, M.A. (2022), "Nonlocal strain gradient theory for buckling and bending of FG-GRNC laminated sandwich plates", Steel Compos. Struct., 43(5), 639-660. https://doi.org/10.12989/scs.2022.43.5.639.
  17. Bi, S.P, Zhang, E.M., Babaei, M., Tornabene, F. and Dimitri, R. (2023), "The influence of GPL reinforcements on the post-buckling behavior of FG porous rings subjected to an external pressure", Math., 11(11), 2421. https://doi.org/10.3390/math11112421.
  18. Ding, H.X. and She, G.L. (2023), "Nonlinear primary resonance behavior of graphene platelets reinforced metal foams conical shells under axial motion", Nonlin. Dyn., 111(15), 13723-13752. https://doi.org/10.1007/s11071-023-08564-x.
  19. Duc, N.D. Seung-Eock, K. and Chan, D.Q. (2018), "Thermal buckling analysis of FGM sandwich truncated conical shells reinforced by FGM stiffeners resting on elastic foundations using FSDT", J. Therm. Stress., 41(3), 331-365. http://doi.org/10.1080/01495739.2017.1398623.
  20. Eipakchi, H. and Nasrekani, F.M. (2022), "Nonlinear static analysis of composite cylinders with metamaterial core layer, adjustable Poisson's ratio, and non-uniform thickness", Steel Compos. Struct., 43(2), 241-256. https://doi.org/10.12989/scs.2022.43.2.241.
  21. Gan, L.L. and She, G.L. (2024a), "Nonlinear low-velocity impact of magneto-electro-elastic plates with initial geometric imperfection", Acta Astronautica, 214, 11-29. https://doi.org/10.1016/j.actaastro.2023.10.016.
  22. Gan, L.L. and She, G.L. (2024b), "Nonlinear transient response of magneto-electro-elastic cylindrical shells with initial geometric imperfection", Appl. Math. Model., 132, 166-186. https://doi.org/10.1016/j.apm.2024.04.049.
  23. Hajmohammad, M.H., Azizkhani, M.B. and Kolahchi, R. (2018), "Multiphase nanocomposite viscoelastic laminated conical shells subjected to magneto-hygrothermal loads: Dynamic buckling analysis", Int. J. Mech. Sci., 137, 205-213. https://doi.org/10.1016/j.ijmecsci.2018.01.026.
  24. Hashemi-Nejad, H., Saidi, A.R. and Bahaadini, R. (2022). "Wave propagation in rotating thin-walled porous blades reinforced with graphene platelets", ZAMM-J. Appl. Math. Mech./Zeitschrift fur Angewandte Mathematik und Mechanik., 10(9), e202100502. http://doi.org/10.1002/zamm.202100502.
  25. Hung, T.Q., Duc, D. and Tu, T.M. (2022), "Static bending mesh-free analysis of smart piezoelectric porous beam reinforced with graphene platelets", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 237(7), 1595-1612. http://doi.org/10.1177/09544062221133032.
  26. Keleshteri, M.M. and Jelovica, J. (2022a), "Analytical assessment of nonlinear forced vibration of functionally graded porous higher order hinged beams", Compos. Struct., 298, 115994. https://doi.org/10.1016/j.compstruct.2022.115994
  27. Keleshteri, M.M. and Jelovica, J. (2022b), "Analytical solution for vibration and buckling of cylindrical sandwich panels with improved FG metal foam core", Eng. Struct., 266, 114580. https://doi.org/10.1016/j.engstruct.2022.114580
  28. Keshtegar, B., Farrokhian, A., Kolahchi, R. and Nguyen-Thoi, T. (2020a), "Dynamic stability response of truncated nanocomposite conical shell with magnetostrictive face sheets utilizing higher order theory of sandwich panels", Eur. J. Mech.-A/Solid., 82, 104010. https://doi.org/10.1016/j.euromechsol.2020.104010.
  29. Keshtegar, B., Motezaker, M., Kolahchi, R. and Nguyen-Thoi, T. (2020b), "Wave propagation and vibration responses in porous smart nanocomposite sandwich beam resting on Kerr foundation considering structural damping", Thin Wall. Struct., 154, 106820. https://doi.org/10.1016/j.tws.2020.106820.
  30. Khatoonabadi, M., Jafari, M., Kiarasi, F., Hosseini, M., Babaei, M. and Asemi, K. (2023), "Shear buckling response of FG porous annular sector plate reinforced by graphene platelet subjected to different shear loads", J. Comput. Appl. Mech., 54, 68-86. http://doi.org/10.22059/jcamech.2023.352182.784.
  31. Kiani, Y. (2019), "Buckling of functionally graded graphene reinforced conical shells under external pressure in thermal environment", Compos. Part. B-Eng., 15, 128-137. http://doi.org/10.1016/j.compositesb.2018.08.052.
  32. Kiarasi, F., Babaei, M., Asemi, K., Dimitri, R. and Tornabene, F. (2022), "Free vibration analysis of thick annular functionally graded plate integrated with Piezo-Magneto-Electro-Elastic layers in a hygrothermal environment", Appl. Sci., 12(20), 10682. http://doi.org/10.3390/app122010682.
  33. Kitipornchai, S., Chen, D. and Yang, J. (2017), "Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets", Mater. Des., 116, 656-665. http://doi.org/10.1016/j.matdes.2016.12.061.
  34. Kolahchi, R. and Kolahdouzan, F. (2021), "A numerical method for magneto-hygro-thermal dynamic stability analysis of defective quadrilateral graphene sheets using higher order nonlocal strain gradient theory with different movable boundary conditions", Appl. Math. Model., 91, 458-475. https://doi.org/10.1016/j.apm.2020.09.060.
  35. Kolahchi, R., Safari, M. and Esmailpour, M. (2016), "Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium", Compos. Struct., 150, 255-265. https://doi.org/10.1016/j.compstruct.2016.05.023.
  36. Kolahchi, R., Zhu, S.P., Keshtegar, B. and Nguyen-Thoi, T. (2020), "Dynamic buckling optimization of laminated aircraft conical shells with hybrid nanocomposite martial", Aerosp. Sci. Technol., 98, 105656. http://doi.org/10.1016/j.ast.2019.105656.
  37. Li, Y.P. and She, G.L. (2024), "Nonlinear transient response analysis of rotating carbon nanotube reinforced composite cylindrical shells with initial geometrical imperfection", Arch. Civil Mech. Eng., 24(3), 161. https://doi.org/10.1007/s43452-024-00973-y.
  38. Li, Z., Zhang, Q., Shen, H., Xiao, X., Kuai, H. and Zheng, J. (2023b), "Buckling performance of the encased functionally graded porous composite liner with polyhedral shapes reinforced by graphene platelets under external pressure", Thin Wall. Struct., 18, 110370. http://doi.org/10.1016/j.tws.2022.110370.
  39. Liu, L.L., Liu, A.R., Yang, J. and Fu, J.Y. (2022), "Lateral-torsional buckling of functionally graded porous arches with graphene platelets reinforcements under an arbitrary radial concentrated load", Compos. Struct., 281, 114973. http://doi.org/10.1016/j.compstruct.2021.114973.
  40. Ma, Z.S. and She, G.L. (2024), "Combined resonance of axially moving truncated conical shells in hygro-thermal environment", Struct. Eng. Mech., 91(3), 291-300. https://doi.org/10.12989/sem.2024.91.3.291.
  41. Mahani, R.B., Eyvazian, A., Musharavati, F.F., Sebaey, T.A. and Talebizadehsardari, P. (2022), "Thermal buckling of laminated Nano-Composite conical shell reinforced with graphene platelets", Thin Wall. Struct., 155, 106589. https://doi.org//10.1016/j.tws.2019.106589.
  42. Maraghi, Z.K., Amir, S. and Arshid, E. (2023), "On the natural frequencies of smart circular plates with magnetorheological fluid core embedded between magnetostrictive patches on Kerr elastic substance", Mech. Bas. Des. Struct. Mach., 52(3), 1651-1668. https://doi.org/10.1080/15397734.2022.2156885.
  43. Mousavi, S.B., Amir, S., Jafari, A. and Arshid, E. (2021), "Analytical solution for analyzing initial curvature effect on vibrational behavior of PM beams integrated with FGP layers based on trigonometric theories", Adv. Nano Res., 10(3), 235-251. https://doi.org/10.12989/anr.2021.10.3.235.
  44. Rahmani, M., Mohammadi, Y. and Kakavand, F. (2020), "Buckling analysis of different types of porous FG conical sandwich shells in various thermal surroundings", J. Brazil. Soc. Mech. Sci., 42(4), 164. http://doi.org/10.1007/s40430-020-2200-2.
  45. Salehi, M., Gholami, R. and Ansari, R. (2022), "Nonlinear resonance of functionally graded porous circular cylindrical shells reinforced by graphene platelet with initial imperfections using higher-order shear deformation theory", Int. J. Struct. Stab. Dyn., 22(6), 2250075. http://doi.org/10.1142/S0219455422500754.
  46. Shahgholian-Ghahfarokhi, D., Rahimi, G., Khodadadi, A., Salehipour, H. and Afrand, M. (2021), "Buckling analyses of FG porous nanocomposite cylindrical shells with graphene platelet reinforcement subjected to uniform external lateral pressure", Mech. Bas. Des. Struct., 49(7), 1059-1079. http://doi.org/10.1080/15397734.2019.1704777.
  47. Shahgholian-Ghahfarokhi, D., Safarpour, M. and Rahimi, A. (2019), "Torsional buckling analyses of functionally graded porous nanocomposite cylindrical shells reinforced with graphene platelets (GPLs)", Mech. Bas. Des. Struct., 49(1), 81-102. http://doi.org/10.1080/15397734.2019.1666723.
  48. She, G.L., Li, Y.P., He, Y.J. and Song, J.P. (2024), "Thermal post-buckling analysis of graphene platelets reinforced metal foams beams with initial geometric imperfection", Comput. Concrete, 33(3), 241-250. https://doi.org/10.12989/cac.2024.33.3.241.
  49. Sobhy, M., Abazid, M.A. and Al Mukahal, F.H.H. (2022), "Electro-thermal buckling of FG graphene platelets-strengthened piezoelectric beams under humid conditions", Adv. Mech. Eng., 14(4), 16878132221091005. http://dx.doi.org/10.1177/16878132221091005.
  50. Song, J.P. and She, G.L. (2024), "Nonlinear resonance and chaotic dynamic of rotating graphene platelets reinforced metal foams plates in thermal environment", Arch. Civil Mech. Eng., 24, 45. https://doi.org/10.1007/s43452-023-00846-w
  51. Song, J.P., She, G.L. and Eltaher, M.A. (2024c), "Nonlinear aero-thermo-elastic flutter analysis of stiffened graphene platelets reinforced metal foams plates with initial geometric imperfection", Aerosp. Sci. Technol., 147, 109050. https://doi.org/10.1016/j.ast.2024.109050.
  52. Song, J.P., She, G.L. and He, Y.J. (2024a), "Nonlinear forced vibration of axially moving functionally graded cylindrical shells under hygro-thermal loads", Geomech. Eng., 36(2), 99-109. https://doi.org/10.12989/gae.2024.36.2.099.
  53. Song, J.P., She, G.L. and He, Y.J. (2024b), "Nonlinear primary resonance of functionally graded doubly curved shells under different boundary conditions", Steel Compos. Struct., 50(2), 149-158. https://doi.org/10.12989/scs.2024.50.2.149.
  54. Taghizadeh, M., Babaei, M., Dimitri, R. and Tornabene, F. (2024), "Assessment of critical buckling load of bi-directional functionally graded truncated conical micro-shells using modified couple stress theory and Ritz method", Mech. Bas. Des. Struct. Mach., 52(6), 3456-3487. http://doi.org/10.1080/15397734.2023.2202230.
  55. Wang, Y.W. and Zhang, W. (2022), "On the thermal buckling and postbuckling responses of temperature-dependent graphene platelets reinforced porous nanocomposite beams", Compos. Struct., 296, 115880. http://doi.org/10.1016/j.compstruct.2022.115880.
  56. Wei, G.H. and Tahouneh, V. (2021) "Temperature dependent buckling analysis of graded porous plate reinforced with graphene platelets", Steel Compos. Struct., 39(3), 275-290. http://doi.org/10.12989/scs.2021.39.3.275.
  57. Xu, M., Li, X., Luo, Y., Wang, G., Guo, Y., Liu, T., ... & Yan, G. (2020), "Thermal buckling of graphene platelets toughening sandwich functionally graded porous plate with temperature-dependent properties", Int. J. Appl. Mech., 12(8), 2050089. http://doi.org/10.1142/S1758825120500891.
  58. Yas, M.H. and Rahimi, S. (2020), "Thermal buckling analysis of porous functionally graded nanocomposite beams reinforced by graphene platelets using Generalized differential quadrature method", Aerosp. Sci. Technol., 107, 106261. http://doi.org/10.1016/j.ast.2020.106261.
  59. Yas, M.H. and Rahimi, S. (2020), "Thermal vibration of functionally graded porous nanocomposite beams reinforced by graphene platelets", Arch. Appl. Mech., 41(8), 1209-1226. http://doi.org/10.1007/s10483-020-2634-6.
  60. Zhang, Y.W. and She, G.L. (2024a), "Combined resonance of graphene platelets reinforced metal foams cylindrical shells with spinning motion under nonlinear forced vibration", Eng. Struct., 300, 117177. https://doi.org/10.1016/j.engstruct.2023.117177.
  61. Zhang, Y.W. and She, G.L. (2024b), "Nonlinear combined resonance of axially moving conical shells under interaction between transverse and parametric modes", Commun. Nonlin. Sci. Numer. Simul., 131, 107849. https://doi.org/10.1016/j.cnsns.2024.107849.
  62. Zhang, Y.W. and She, G.L. (2024c), "Investigation on internal resonance of fluid conveying pipes with initial geometric imperfection", Appl. Ocean Res., 146, 103961. https://doi.org/10.1016/j.apor.2024.103961.
  63. Zhou, Z., Wang, Y., Zhang, S., Dimitri, R., Tornabene, F. and Asemi, K. (2023), "Numerical study on the buckling behavior of FG porous spherical caps reinforced by graphene platelets", Nanomater., 13(7), 1205. http://doi.org/10.3390/nano13071205.