• Title/Summary/Keyword: General Rotor System

Search Result 114, Processing Time 0.029 seconds

Aerodynamic performance enhancement of cycloidal rotor according to blade pivot point movement and preset angle adjustment

  • Hwang, In-Seong;Kim, Seung-Jo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.2
    • /
    • pp.58-63
    • /
    • 2008
  • This paper describes aerodynamic performance enhancement of cycloidal rotor according to the blade pivot point movement and the blade preset angle adjustment. Cycloidal blade system which consists of several blades rotating about an axis in parallel direction and changing its pitch angle periodically, is a propulsion mechanism of a new concept vertical take off and landing aircraft, cyclocopter. Based on the designed geometry of cyclocopter, numerical analysis was carried out by a general purpose commercial CFD program, STAR-CD. According to tills analysis, the efficiency of cycloidal rotor could be improved more than 15% by the introduced methods.

Dynamic Modeling and Analysis of General Rotor Systems with Open Cracks (열린 균열이 있는 일반 회전체계의 동적 모델링 및 해석)

  • 홍성욱;최성환;이종원
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.4
    • /
    • pp.290-299
    • /
    • 2003
  • This paper presents an efficient modeling and dynamic analysis method for open cracked rotor bearing systems. An equivalent bending spring model is introduced to represent the structural weakening effect in the presence of cracks. The proposed modeling method is validated through a series of simulations and experiments. First, the proposed method Is rigorously compared with a commercial finite element code. Then, an experiment is performed to validate the proposed modeling method. Finally, a numerical example is introduced to demonstrate the possible application of the proposed method in the crack diagnosis for rotor systems.

An Efficient Dynamic Model of General Rotor Systems with Open Cracks (열린 균열이 있는 일반 회전체계의 효율적인 동적 모델)

  • 최성환;홍성욱;이종원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.88-93
    • /
    • 2003
  • This paper presents an efficient dynamic modeling method for open cracked rotor-bearing systems. An equivalent bending spring model is introduced to represent the structural weakening effect in the presence of cracks. The proposed modeling method is validated through a series of simulations and experiments. First, the proposed method is rigorously compared with a commercial finite element code. Then, an experiment is performed to validate the proposed modeling method. Finally, a numerical example is introduced to demonstrate the possible application of the proposed method in the crack diagnosis fur rotor systems.

  • PDF

Vibration Analysis of Induction Motor for Main Coolant Pump (냉각재 순환펌프용 유도전동기의 진동 해석)

  • Hong, Seung-Soo;Koo, Dae-Hyun;Kang, Do-Hyun;Huh, Hyung
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.312-314
    • /
    • 1999
  • This paper describes the general formulation for free vibration analysis of rotor by the transfer matrix method. For solving structural dynamics problems, it is used the transfer matrix method. The rotor of the induction motor for main coolant pump is regarded as a distributed mass system.

  • PDF

Nonlinear Vibration Model of Ball Bearing Waviness in a Rigid Rotor Supported by Multi-Row Ball Bearing Considering Five Degrees of Freedom (다수의 각접촉 볼베어링으로 지지된 5자유도 회전계에서 볼베어링의 Waviness에 의해 발생하는 비선형진동 해석모델)

  • 정성원;장건희
    • Journal of KSNVE
    • /
    • v.11 no.2
    • /
    • pp.336-345
    • /
    • 2001
  • This research presents a nonlinear model to analyze the ball bearing nitration due to the waviness in a rigid rotor supported by multi-row ball bearings. The waviness of a ball and each races is modeled by the superposition of sinusoidal function, and the position vectors of inner and outer groove radius center are defined with respect to the mass center of the rotor in order to consider five degrees of freedom of a general rotor-bearing system. The waviness of a ball bearing is introduced to these position vectors to use the Hertzian contact theory in order to calculate the elastic deflection and nonlinear contact force resulting from the waviness while the rotor has translational and angular motion. They can be determined by solving the nonlinear equations of motion with five degrees of freedom by using the Runge-Kutta-Fehlberg algorithm. Numerical results of this research are validated with those of prior researchers. The proposed model can calculate the translational displacement as well as the angular displacement of the rotor supported by the multi-row ball bearings with waviness. It also characterizes the nitration frequencies resulting from the various kinds of waviness in rolling elements, the harmonic frequencies resulting from the nonlinear load-deflection characteristics of ball bearing. and the sideband frequencies resulting from the waviness interaction.

  • PDF

Development of Wound Rotor Synchronous Motor for Belt-Driven e-Assist System

  • Lee, Geun-Ho;Lee, Heon-Hyeong;Wang, Qi
    • Journal of Magnetics
    • /
    • v.18 no.4
    • /
    • pp.487-493
    • /
    • 2013
  • The automotive industry is showing widespread interest in belt-driven electric motor-assisted (e-Assist) systems. A belt-driven assist system (BAS) starts and assists the combustion engine in place of the conventional generator. In this study, a water-cooled wound rotor synchronous motor (WRSM) for the e-Assist system was designed and analyzed. The performance of the WRSM was compared with that of an interior permanent magnet synchronous motor (IPMSM). The WRSM efficiency can be improved for the BAS by adjusting the field flux at high speeds. The field current map to obtain the maximum efficiency based on the speed and torque was developed. To control the field flux via field current control in the WRSM, a general H-bridge circuit was added to the WRSM inverter to get the rapid current response in the high-speed region; the characteristics were compared with the chopper circuit. A WRSM developed for the belt-driven e-Assist system and a prototype 115 V power electronic converter to drive the WRSM were tested with a 900 cc combustion engine. The test results showed that the WRSM-type e-Assist system had good characteristics and could successfully start and assist the 900 cc combustion engine.

An Experimental Study of Aeroelastic Stability of Hingeless Hub System with Metal and Composite Hub Flexure (금속재와 복합재 허브 Flexure를 갖는 무힌지 허브시스템의 공력탄성학적 안정성에 관한 실험적 연구)

  • Song, Keun-Woong;Kim, Joune-Ho;Kim, Deog-Kwan;Rhee, Wook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.98-105
    • /
    • 2005
  • This paper presents the result of the aeroelastic stability test of the small-scaled hingeless hub system with composite paddle blades in hover and forward flight conditions. Excitation tests of hingeless hub system installed in GSRTS(General Small-scale Rotor Test System) at KARI(Korea Aerospace Research Institute) were carried out to get lead-lag damping ratio of blades with flexures as hub flexure. MBA(Moving Block Analysis) technique was used for the estimation of lead-lag damping ratio. First, blades with metal flexures, then with composite flexures of the same dynamic properties of rotor system as metal one were tested. Tests were done on the ground and in the wind tunnel according to the test conditions of hover and forward flight, respectively. Composite flexures were found to have better damping characteristics over metal ones in the non-rotating vibration test, and it was confirmed that the use of composite flexures would give observable improvement in aeroelastic stability compared to metal ones in all test conditions.

Implementation of Quad-rotor Hovering Systems with Tracking (추적이 가능한 쿼드로터 호버링 시스템 구현)

  • Jung, Won-Ho;Chung, Jae-Pil
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.6
    • /
    • pp.574-579
    • /
    • 2016
  • Unlike general unmanned aerial vehicles, the quad-rotor is attracting the attention of many people because of simple structure and very useful value. However, as the interest in drones increases, the safety and location of vehicles are becoming more important provide against aviation safety accidents or lost accidents. Therefore, in this paper, we propose a tracking system that stabilizes the model with a simple controller by linearized modeling and grasp tilt angle data from various sensor through the filter. The developed tracking system transmits the position of the quad-rotor in flight to the computer and shows it through the route, so it can check the flight path and various information such as flight speed and altitude at the same time. Then the sensor used in the actual quad-rotor can not measure exact sensor data for disturbance and vibration. So we use sensor fusion of Kalman filter and Complementary filter to overcome this problem and the stability of the quad-rotor hovering is realized by PID control. Through simulation, various information such as the speed, position, and altitude of the quad-rotor were confirmed in real time.

Fluid/Structure Coupled Analysis of 3D Turbine Blade Considering Stator-rotor Interaction (스테이터-로터 상호간섭 효과를 고려한 3차원 터빈 블레이드의 유체/구조 연계해석)

  • Kim, Yu-Sung;Kim, Dong-Hyun;Kim, Yo-Han;Park, Oung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.8
    • /
    • pp.764-772
    • /
    • 2009
  • In this study, fluid/structure coupled analyses have been conducted for 3-D stator and rotor configuration. Advanced computational analysis system based on computational fluid dynamics(CFD) and computational structural dynamics(CSD) has been developed in order to investigate fluid/structure responses of general stator-rotor configurations. To solve the fluid/structure coupled problems, fluid domains are modeled using the structural grid system with dynamic moving and local deforming techniques. Reynolds-averaged Navier-Stokes equations with Spalart-Allmaras(S-A) and SST ${\kappa}-{\omega}$ turbulence models are solved for unsteady flow problems. A fully implicit time marching scheme based on the Newmark direct integration method is used for computing the coupled aeroelastic governing equations of the 3-D turbine blades for fluid-structure interaction(FSI) problems. Detailed fluid/structure analysis responses for stator-rotor interaction flow conditions are presented to show the physical performance and flow characteristics.

Fluid/structure Coupled Analysis of 3D Turbine Blade Considering Stator-Rotor Interaction (스테이터-로터 상호간섭 효과를 고려한 3차원 터빈 블레이드의 유체/구조 연계해석)

  • Kim, Yu-Sung;Kim, Dong-Hyun;Kim, Yo-Han;Park, Oung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.563-569
    • /
    • 2008
  • In this study, fluid/structure coupled analyses have been conducted f3r 3-D stator and rotor configuration. Advanced computational analysis system based on computational fluid dynamics (CFD) and computational structural dynamics (CSD) has been developed in order to investigate fluid/structure responses of general stator-rotor configurations. To solve the fluid/structure coupled problems, fluid domains are modeled using the structural grid system with dynamic moving and local deforming techniques. Reynolds-averaged Navier-Stokes equations with Spalart-Allmaras (S-A) and SST ${\kappa}-{\omega}$ turbulence models are solved for unsteady flow problems. A fully implicit time marching scheme based on the Newmark direct integration method is used for computing the coupled aeroelastic governing equations of the 3-D turbine blades for fluid-structure interaction (FSI) problems. Detailed fluid/structure analysis responses for stator-rotor interaction flow conditions are presented to show the physical performance and flow characteristics.

  • PDF