• Title/Summary/Keyword: Gene-Gene Interactions

Search Result 465, Processing Time 0.023 seconds

Efficient Strategy to Identify Gene-Gene Interactions and Its Application to Type 2 Diabetes

  • Li, Donghe;Wo, Sungho
    • Genomics & Informatics
    • /
    • v.14 no.4
    • /
    • pp.160-165
    • /
    • 2016
  • Over the past decade, the detection of gene-gene interactions has become more and more popular in the field of genome-wide association studies (GWASs). The goal of the GWAS is to identify genetic susceptibility to complex diseases by assaying and analyzing hundreds of thousands of single-nucleotide polymorphisms. However, such tests are computationally demanding and methodologically challenging. Recently, a simple but powerful method, named "BOolean Operation-based Screening and Testing" (BOOST), was proposed for genome-wide gene-gene interaction analyses. BOOST was designed with a Boolean representation of genotype data and is approximately equivalent to the log-linear model. It is extremely fast, and genome-wide gene-gene interaction analyses can be completed within a few hours. However, BOOST can not adjust for covariate effects, and its type-1 error control is not correct. Thus, we considered two-step approaches for gene-gene interaction analyses. First, we selected gene-gene interactions with BOOST and applied logistic regression with covariate adjustments to select gene-gene interactions. We applied the two-step approach to type 2 diabetes (T2D) in the Korea Association Resource (KARE) cohort and identified some promising pairs of single-nucleotide polymorphisms associated with T2D.

Investigation of gene-gene interactions of clock genes for chronotype in a healthy Korean population

  • Park, Mira;Kim, Soon Ae;Shin, Jieun;Joo, Eun-Jeong
    • Genomics & Informatics
    • /
    • v.18 no.4
    • /
    • pp.38.1-38.9
    • /
    • 2020
  • Chronotype is an important moderator of psychiatric illnesses, which seems to be controlled in some part by genetic factors. Clock genes are the most relevant genes for chronotype. In addition to the roles of individual genes, gene-gene interactions of clock genes substantially contribute to chronotype. We investigated genetic associations and gene-gene interactions of the clock genes BHLHB2, CLOCK, CSNK1E, NR1D1, PER1, PER2, PER3, and TIMELESS for chronotype in 1,293 healthy Korean individuals. Regression analysis was conducted to find associations between single nucleotide polymorphism (SNP) and chronotype. For gene-gene interaction analyses, the quantitative multifactor dimensionality reduction (QMDR) method, a nonparametric model-free method for quantitative phenotypes, were performed. No individual SNP or haplotype showed a significant association with chronotype by both regression analysis and single-locus model of QMDR. QMDR analysis identified NR1D1 rs2314339 and TIMELESS rs4630333 as the best SNP pairs among two-locus interaction models associated with chronotype (cross-validation consistency [CVC] = 8/10, p = 0.041). For the three-locus interaction model, the SNP combination of NR1D1 rs2314339, TIMELESS rs4630333, and PER3 rs228669 showed the best results (CVC = 4/10, p < 0.001). However, because the mean differences between genotype combinations were minor, the clinical roles of clock gene interactions are unlikely to be critical.

EFMDR-Fast: An Application of Empirical Fuzzy Multifactor Dimensionality Reduction for Fast Execution

  • Leem, Sangseob;Park, Taesung
    • Genomics & Informatics
    • /
    • v.16 no.4
    • /
    • pp.37.1-37.3
    • /
    • 2018
  • Gene-gene interaction is a key factor for explaining missing heritability. Many methods have been proposed to identify gene-gene interactions. Multifactor dimensionality reduction (MDR) is a well-known method for the detection of gene-gene interactions by reduction from genotypes of single-nucleotide polymorphism combinations to a binary variable with a value of high risk or low risk. This method has been widely expanded to own a specific objective. Among those expansions, fuzzy-MDR uses the fuzzy set theory for the membership of high risk or low risk and increases the detection rates of gene-gene interactions. Fuzzy-MDR is expanded by a maximum likelihood estimator as a new membership function in empirical fuzzy MDR (EFMDR). However, EFMDR is relatively slow, because it is implemented by R script language. Therefore, in this study, we implemented EFMDR using RCPP ($c^{{+}{+}}$ package) for faster executions. Our implementation for faster EFMDR, called EMMDR-Fast, is about 800 times faster than EFMDR written by R script only.

Application of Crossover Analysis-logistic Regression in the Assessment of Gene- environmental Interactions for Colorectal Cancer

  • Wu, Ya-Zhou;Yang, Huan;Zhang, Ling;Zhang, Yan-Qi;Liu, Ling;Yi, Dong;Cao, Jia
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.5
    • /
    • pp.2031-2037
    • /
    • 2012
  • Background: Analysis of gene-gene and gene-environment interactions for complex multifactorial human disease faces challenges regarding statistical methodology. One major difficulty is partly due to the limitations of parametric-statistical methods for detection of gene effects that are dependent solely or partially on interactions with other genes or environmental exposures. Based on our previous case-control study in Chongqing of China, we have found increased risk of colorectal cancer exists in individuals carrying a novel homozygous TT at locus rs1329149 and known homozygous AA at locus rs671. Methods: In this study, we proposed statistical method-crossover analysis in combination with logistic regression model, to further analyze our data and focus on assessing gene-environmental interactions for colorectal cancer. Results: The results of the crossover analysis showed that there are possible multiplicative interactions between loci rs671 and rs1329149 with alcohol consumption. Multifactorial logistic regression analysis also validated that loci rs671 and rs1329149 both exhibited a multiplicative interaction with alcohol consumption. Moreover, we also found additive interactions between any pair of two factors (among the four risk factors: gene loci rs671, rs1329149, age and alcohol consumption) through the crossover analysis, which was not evident on logistic regression. Conclusions: In conclusion, the method based on crossover analysis-logistic regression is successful in assessing additive and multiplicative gene-environment interactions, and in revealing synergistic effects of gene loci rs671 and rs1329149 with alcohol consumption in the pathogenesis and development of colorectal cancer.

HisCoM-GGI: Software for Hierarchical Structural Component Analysis of Gene-Gene Interactions

  • Choi, Sungkyoung;Lee, Sungyoung;Park, Taesung
    • Genomics & Informatics
    • /
    • v.16 no.4
    • /
    • pp.38.1-38.3
    • /
    • 2018
  • Gene-gene interaction (GGI) analysis is known to play an important role in explaining missing heritability. Many previous studies have already proposed software to analyze GGI, but most methods focus on a binary phenotype in a case-control design. In this study, we developed "Hierarchical structural CoMponent analysis of Gene-Gene Interactions" (HisCoM-GGI) software for GGI analysis with a continuous phenotype. The HisCoM-GGI method considers hierarchical structural relationships between genes and single nucleotide polymorphisms (SNPs), enabling both gene-level and SNP-level interaction analysis in a single model. Furthermore, this software accepts various types of genomic data and supports data management and multithreading to improve the efficiency of genome-wide association study data analysis. We expect that HisCoM-GGI software will provide advanced accessibility to researchers in genetic interaction studies and a more effective way to understand biological mechanisms of complex diseases.

Gene-Diet Interaction on Cancer Risk in Epidemiological Studies

  • Lee, Sang-Ah
    • Journal of Preventive Medicine and Public Health
    • /
    • v.42 no.6
    • /
    • pp.360-370
    • /
    • 2009
  • Genetic factors clearly play a role in carcinogenesis, but migrant studies provide unequivocal evidence that environmental factors are critical in defining cancer risk. Therefore, one may expect that the lower availability of substrate for biochemical reactions leads to more genetic changes in enzyme function; for example, most studies have indicated the variant MTHFR genotype 677TT is related to biomarkers, such as homocysteine concentrations or global DNA methylation particularly in a low folate diet. The modification of a phenotype related to a genotype, particularly by dietary habits, could support the notion that some of inconsistencies in findings from molecular epidemiologic studies could be due to differences in the populations studied and unaccounted underlying characteristics mediating the relationship between genetic polymorphisms and the actual phenotypes. Given the evidence that diet can modify cancer risk, gene-diet interactions in cancer etiology would be anticipated. However, much of the evidence in this area comes from observational epidemiology, which limits the causal inference. Thus, the investigation of these interactions is essential to gain a full understanding of the impact of genetic variation on health outcomes. This report reviews current approaches to gene-diet interactions in epidemiological studies. Characteristics of gene and dietary factors are divided into four categories: one carbon metabolism-related gene polymorphisms and dietary factors including folate, vitamin B group and methionines; oxidative stress-related gene polymorphisms and antioxidant nutrients including vegetable and fruit intake; carcinogen-metabolizing gene polymorphisms and meat intake including heterocyclic amins and polycyclic aromatic hydrocarbon; and other gene-diet interactive effect on cancer.

Exploration of the Gene-Gene Interactions Using the Relative Risks in Distinct Genotypes (유전자형별 상대 위험도를 이용한 유전자-유전자간 상호작용 탐색)

  • Jung, Ji-Won;Yee, Jae-Yong;Lee, Suk-Hoon;Pa, Mi-Ra
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.5
    • /
    • pp.861-869
    • /
    • 2011
  • One of the main objects of recent genetic studies is to understand genetic factors that induce complex diseases. If there are interactions between loci, it is difficult to find such associations through a single-locus analysis strategy. Thus we need to consider the gene-gene interactions and/or gene-environment interactions. The MDR(multifactor dimensionality reduction) method is being used frequently; however, it is not appropriate to detect interactions caused by a small fraction of the possible genotype pairs. In this study, we propose a relative risk interaction explorer that detects interactions through the calculation of the relative risks between the control and disease groups from each genetic combinations. For illustration, we apply this method to MDR open source data. We also compare the MDR and the proposed method using the simulated data eight genetic models.

Network Graph Analysis of Gene-Gene Interactions in Genome-Wide Association Study Data

  • Lee, Sungyoung;Kwon, Min-Seok;Park, Taesung
    • Genomics & Informatics
    • /
    • v.10 no.4
    • /
    • pp.256-262
    • /
    • 2012
  • Most common complex traits, such as obesity, hypertension, diabetes, and cancers, are known to be associated with multiple genes, environmental factors, and their epistasis. Recently, the development of advanced genotyping technologies has allowed us to perform genome-wide association studies (GWASs). For detecting the effects of multiple genes on complex traits, many approaches have been proposed for GWASs. Multifactor dimensionality reduction (MDR) is one of the powerful and efficient methods for detecting high-order gene-gene ($G{\times}G$) interactions. However, the biological interpretation of $G{\times}G$ interactions identified by MDR analysis is not easy. In order to aid the interpretation of MDR results, we propose a network graph analysis to elucidate the meaning of identified $G{\times}G$ interactions. The proposed network graph analysis consists of three steps. The first step is for performing $G{\times}G$ interaction analysis using MDR analysis. The second step is to draw the network graph using the MDR result. The third step is to provide biological evidence of the identified $G{\times}G$ interaction using external biological databases. The proposed method was applied to Korean Association Resource (KARE) data, containing 8838 individuals with 327,632 single-nucleotide polymorphisms, in order to perform $G{\times}G$ interaction analysis of body mass index (BMI). Our network graph analysis successfully showed that many identified $G{\times}G$ interactions have known biological evidence related to BMI. We expect that our network graph analysis will be helpful to interpret the biological meaning of $G{\times}G$ interactions.

Gene-Gene Interaction Analysis for the Accelerated Failure Time Model Using a Unified Model-Based Multifactor Dimensionality Reduction Method

  • Lee, Seungyeoun;Son, Donghee;Yu, Wenbao;Park, Taesung
    • Genomics & Informatics
    • /
    • v.14 no.4
    • /
    • pp.166-172
    • /
    • 2016
  • Although a large number of genetic variants have been identified to be associated with common diseases through genome-wide association studies, there still exits limitations in explaining the missing heritability. One approach to solving this missing heritability problem is to investigate gene-gene interactions, rather than a single-locus approach. For gene-gene interaction analysis, the multifactor dimensionality reduction (MDR) method has been widely applied, since the constructive induction algorithm of MDR efficiently reduces high-order dimensions into one dimension by classifying multi-level genotypes into high- and low-risk groups. The MDR method has been extended to various phenotypes and has been improved to provide a significance test for gene-gene interactions. In this paper, we propose a simple method, called accelerated failure time (AFT) UM-MDR, in which the idea of a unified model-based MDR is extended to the survival phenotype by incorporating AFT-MDR into the classification step. The proposed AFT UM-MDR method is compared with AFT-MDR through simulation studies, and a short discussion is given.

Funcyional Studies on Gene 2.5 Protein of Bacteriophage T7 : Protein Interactions of Replicative Proteins (박테리오파아지 T7 의 기능에 관한 연구;복제단백질간의 단백질 상호작용)

  • 김학준;김영태
    • Journal of Life Science
    • /
    • v.6 no.3
    • /
    • pp.185-192
    • /
    • 1996
  • Bacteriophage T7 gene 2.5 protein, a single-stranded DNA binding protein, is required for T7 DNA replication, recombination, and repair. T7 gene 2.5 protein has two distinctive domains, DNA binding and C-terminal domain, directly involved in protein-protein interaction. Gene 2.5 protein participates in the DNA replication of Bacteriophage T7, which makes this protein essential for the T7 growth and DNA replication. What gene 2.5 protein makes important at T7 growth and DNA replication is its binding affinity to single-stranded DNA and the protein-protein important at T7 DNA replication proteins which are essential for the T7 DNA synthesis. We have constructed pGST2.5(WT) encoding the wild-type gene 2.5 protein and pGST2.5$\Delta $21C lacking C-terminal 21 amino acid residues. The purified GST-fusion proteins, GST2.5(WT) and GST2.5(WT)$\Delta$21C, were used for whether the carboxyl-terminal domain participates in the protein-protein interactions or not. GST2.5(WT) and GST2.5$\Delta$21C showed the difference in the protein-protein interaction. GST2.5(WT) interacted with T7 DNA polymerase and gene 4 protein, but GST2.5$\Delta$21C did not interact with either protein. Secondly, GST2.5(WT) interacts with gene 4 proteins (helicase/primase) but not GST2.5$\Delta$21C. these results proved the involvement of the carboxyl-terminal domain of gene 2.5 protein in the protein-protein interaction. We clearly conclude that carboxy-terminal domain of gene 2.5 protein is firmly involved in protein-protein interactions in T7 replication proteins.

  • PDF