• Title/Summary/Keyword: Gene transformation

Search Result 805, Processing Time 0.028 seconds

Transgenic Plants of Easter Lily (Lilium longiflorum) with Phosphinothricin Resistance

  • Ahn, Byung Joon;Joung, Young Hee;Kamo, Kathryn K.
    • Journal of Plant Biotechnology
    • /
    • v.6 no.1
    • /
    • pp.9-13
    • /
    • 2004
  • Transient uidA expression was used to optimize parameters required for biolistic transformation of suspension cells of Easter lily, Lilium longiflourm. Maximum uidA expression occurred following bombardment with gold particles as compared to tungsten. A 3hr pre-treatment of suspension cells with 0.125M osmoticum resulted in a 1.5X increase in uidA expression. A helium pressure of 1550 psi combined with a particle travelling distance of 6cm resulted in maximum uidA expression as compared to either 1100, 1200, or 1800 psi. Transient transformation resulted in up to 493 uidA expressing cells/Petri plate. For stable transformation suspension cells of Lilium longiflorum, were co-bombarded with plasmid DNA containing cucumber mosaic virus (CMV) replicase under the rice actin (Act1) promoter and either the bar or PAT genes under the cauliflower mosaic virus (CaMV 355) promoter. Ten regenerated plants contained the transgene as analyzed by PCR, and two of the ten plants were confirmed to contain the transgene by Southern hybridization. The two transgenic plants were independent transformants, one containing the bar gene and the other both the CMV replicase and bar genes. Plants were sprayed at the rosette stage and found to be resistant to 1000 mg/L of phosphinothricin (Trade name-Ignite) indicating expression of the bar gene throughout the leaves when bar was under control of the CaMV 35S promoter.

Transformation of Brassica napus with Glutathione Reductase Gene (Glutathione reductase 유전자 도입에 의한 유채의 형질 전환)

  • Lee, Hyo-Shin;Chung, Min-Sup;Jo, Jin-Ki
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.18 no.1
    • /
    • pp.69-76
    • /
    • 1998
  • This study was conducted to construct of the transgenic plants wliich are resistant to oxidative stresses including ozone with B. mpestris cytosolic glutathione reductase cDNA using the binary vector system of Agrobacterium tumefaciens. The 1.8kb B. campestris cytosolic GR cDNA was subcloned into the unique Sma I site of the plant transformation vector pBKSI- I, downstream of the constitutive CaMV 35s promoter and upstream of the nos termination sequence, in place of the uidA (GUS) reporter gene. The resulting plant transformation vector, pBKS-GRI, was introduced into A. tumefaciens LBA4404 by two cycles of tkeze-thaw method. The B. nqus cotyledonary petioles were transformed by the Agrubaferium harboring pBKS-GRI. Transformed shoots were induced and selected on regeneration medium supplemented with kanarnycin. The shoot formation was increased remarkably by addition of Ag$NO_3$, in MS media. The transgenic plants were analyzed for the presence of the B. campestris GR gene by Southern blot analysis and it was confirmed that a foregin gene was stably integrated into the genomes of B. nqus plants.

  • PDF

Development of Basta Resistant Tobacco Using Artificial Phosphinothricin Acetyltransferase Gene (인공합성 Phosphinothricin Acetyltransferase 유전자에 의한 Basta 내성 연초식물체의 개발)

  • 양덕춘
    • Korean Journal of Plant Resources
    • /
    • v.11 no.2
    • /
    • pp.188-194
    • /
    • 1998
  • This experiment was conducted to introduce phosphinothricin acetyl -transferase(PAT) gene, resistant to basta and non-selective herbidide, into tobacco(Nicotiana tabacum cv.BY4). For shoot formation,tobacco leaf disks were placed on the MS medium supplemented with 2.0mg/L BA and 0.1mg/L NAA. In this medium condition, tobacco leaf disces were cocultivated with A. tumefaciens MP90 containing NPT IIand PAT resistant to kanamycin and Basta, respectively. Shoots were obtained in the medium containing antibiotics, and those were transferred to rooting medium supplemented with 0.1mg/L NAA and antibiotics. The plants obtaining roots were transplanted into soil. Phenotype of transgenic tobacco plant was mostly as normal plant. However, about 5% was abnormal plant, which did not set seeds. PCR analysis and southern blot were performed to determine transformation. As the results, it was confirmed that PAT gene was stably integrated into tobacco genome.When herbicide, basta, was sprayed to the plants confirmed by PCR, the transgenic plants showed normal growth, whereas normal plants died. Therefore, the result of this experiment show that tobacco transformation for the resistance to basta, non-selective herbicide, was successful because PAT gene was stably integrated into tobacco.

  • PDF

Single Somatic Embryogenesis from Transformant with Proteinase II Gene in Panax ginseng C.A. Meyer

  • Yang, Deok-Chun;Kim, Se-Young;Rho, Yeong-Deok;Kim, Moo-Sung
    • Plant Resources
    • /
    • v.6 no.3
    • /
    • pp.205-210
    • /
    • 2003
  • Ginseng(Panax ginseng C.A. Meyer) is a perennial herbaceous plant which grows very slowly. It takes about 3 to 4 years from seeding to collecting the ripe seeds and the ginseng propagation is very difficult. and so, it is very difficult to breed ginseng plant. Ginseng tissue culture was started from at 1960, and ginseng commercial product by in vitro callus culture was saled, however upto now, regenerants were not planted to soil normally. Recently, plant genetic engineering to produce transgenic plants by introducing useful genes has been advanced greatly. In a present paper, transformation of ginseng plants was achieved by co-cultivation with Agrobacterium harboring the binary vector coding Proteinase-II gene, which confer resistant or tolerant to insect pests, The binary vector for transformation was constructed with disarmed Ti-plasmid and with double 35S promoter. The NPT II gene and introduced genes of the transgenic ginseng plants were successfully identified by the PCR. Especially the transgenic ginseng plants were regenerated using new techniques such as repetitive single somatic embryogenesis.

  • PDF

Development of a Transformation System for the Medicinal Fungus Sanghuangporus baumii and Acquisition of High-Value Strain

  • Zengcai Liu;Ruipeng Liu;Li Zou
    • Mycobiology
    • /
    • v.51 no.3
    • /
    • pp.169-177
    • /
    • 2023
  • To further explore the molecular mechanism of triterpenoid biosynthesis and acquire high-value strain of Sanghuangporus baumii, the Agrobacterium tumefaciens-mediated transformation (ATMT) system was studied. The key triterpenoid biosynthesis-associated gene isopentenyl diphosphate isomerase (IDI) was transformed into S. baumii by ATMT system. Then, the qRT-PCR technique was used to analyze gene transcript level, and the widely targeted metabolomics was used to investigate individual triterpenoid content. Total triterpenoid content and anti-oxidant activity were determined by spectrophotometer. In this study, we for the first time established an efficient ATMT system and transferred the IDI gene into S. baumii. Relative to the wild-type (WT) strain, the IDI-transformant (IT) strain showed significantly higher transcript levels of IDI and total triterpenoid content. We then investigated individual triterpenoids in S. baumii, which led to the identification of 10 distinct triterpenoids. The contents of individual triterpenoids produced by the IT2 strain were 1.76-10.03 times higher than those produced by the WT strain. The triterpenoid production showed a significant positive correlation with the IDI gene expression. Besides, IT2 strain showed better anti-oxidant activity. The findings provide valuable information about the biosynthetic pathway of triterpenoids and provide a strategy for cultivating high-value S. baumii strains.

Organogenesis and Production of Some Transgenic Legume Plants by Agrobacterium tumefaciens-mediated Herbicide Resistance Gene Transformation

  • Kantayos, Vipada;Lee, Hyo-Yeon;Bae, Chang-Hyu
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.10a
    • /
    • pp.52-52
    • /
    • 2018
  • Development of herbicide resistant transgenic legume plants through Agrobacterium-mediated transformation has been worked in many previous studied. Plant regeneration after infection is the important step to obtain successful transgenic plants. Many attempts try to find the optimum media condition for plant regeneration after infection. However, the transformation efficiency of legume plants is still low. In this study, regeneration of some Korean legume species including two soybean cultivars (Dawon and Pungsan) and pea have been done with organogenesis which is used various kind of explants such as cotyledonary-nodes in soybean and bud-containing tissue in pea. We developed the optimum media condition for plant regeneration regulators under Agrobacterium-mediated transformation using different kind and various concentration of plant growth. As the results, B5 medium containing 2 mg/L of 6-benzylaminopurine was selected in this study for the optimum plant regeneration media. The segments were inoculated with Agrobacterium suspension harbored an IG2 vector containing bar gene which confers resistance to phosphinotricin (PPT) in 3, 5 and 7 days. The transformation efficiency was achieved in Dawon 3.03 % and pea 1.46 % with co-cultivation period of 7 days which is showed a high number of GUS positive expression period.

  • PDF

Efficiency of transformation mediated by Agrobacterium tumefaciens using vacuum infiltration in rice (Oryza sativa L.)

  • Safitri, Fika Ayu;Ubaidillah, Mohammad;Kim, Kyung-Min
    • Journal of Plant Biotechnology
    • /
    • v.43 no.1
    • /
    • pp.66-75
    • /
    • 2016
  • Agrobacterium-mediated gene transfer has recently been developed to improve rice transformation. In this study, 3 different transformation methods were tested including soaking, co-cultivation, and vacuum infiltration. Agrobacterium tumefaciens GV3101 harboring the binary vector pGreen:: LeGSNOR was used in this experiment. This study aimed to identify the most appropriate method for transferring LeGSNOR into rice. Vacuum infiltration of the embryonic calli for 5 min in Ilpum resulted in high transformation efficiency based on confirmation by PCR, RT-PCR, and qRT-PCR analyses. In conclusion, we described the development of an efficient transformation protocol for the stable integration of foreign genes into rice; furthermore, the study results confirmed that PCR is suitable for efficient detection of the integrated gene. The vacuum infiltration system is a potentially useful tool for future studies focusing on transferring important genes into rice seed calli, and may help reduce time and effort.

Comparison of Agrobacterium-mediated of Five Alfalfa (Medicago sativa L.) Cultivars Using the GUS Reporter Gene

  • Lee, Sang-Hoon;Kim, Ki-Yong;Park, Hyung Soo;Cha, Joon-Yung;Lee, Ki-Won
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.34 no.3
    • /
    • pp.187-192
    • /
    • 2014
  • Alfalfa (Medicago sativa L.) is one of the most important forage legumes in the world. It has been demanded to establish the efficient transformation system in commercial varieties of alfalfa for forage molecular breeding and production of varieties possessing new characteristics. To approach this, genetic transformation techniques have been developed and modified. This work was performed to establish conditions for effective transformation of commercial alfalfa cultivars, Xinjiang Daye, ABT405, Vernal, Wintergreen and Alfagraze. GUS gene was used as a transgene and cotyledon and hypocotyl as a source of explants. Transformation efficiencies differed from 0 to 7.9% among alfalfa cultivars. Highest transformation efficiencies were observed in the cultivar Xinjiang Daye. The integration and expression of the transgenes in the transformed alfalfa plants was confirmed by polymerase chain reaction (PCR) and histochemical GUS assay. These data demonstrate highly efficient Agrobacterium transformation of diverse alfalfa cultivars Xinjiang Daye, which enables routine production of transgenic alfalfa plants.

Molecular and Cytogenetic Analysis of Transgenic Plants of Rice(Oryza sativa L.) Produced by Agrobacterium-mediated Transformation

  • Cho, Joon-Hyeong;Kim, Yong-Wook
    • Plant Resources
    • /
    • v.7 no.1
    • /
    • pp.39-46
    • /
    • 2004
  • To demonstrate the importance of transformation efficiency in independent event, molecular and cytogenetic analysis were conducted with genomic DNA and chromosome of transgenic plants produced by Agrobacterium tumefeciens LBA4404 (pSBM-PPGN: gusA and bar). Selection ratios of putative transgenic calli were similar in independent experiments, however, transformation efficiencies were critically influenced by the type of regeneration media. MSRK5SS-Pr regeneration mediun, which contains 5 mgL$^{-1}$ kinetin, 2% (w/v) sucrose in combination with 3% (w/v) sorbitol, and 500 mgL$^{-1}$ proline, was efficient to produce transgenic plant of rice from putative transgenic callus in the presence of L-phosphinotricin (PPT). With MSRK5SS-Pr medium, transformation efficincies of Nagdongbyeo were significantly enhanced from 3.7% to 6.3% in independent callus lines arid from 7.3% to 19.7% in plants produced, respectively. Stable integration and expression of bar gene were confirmed by basta herbicide assay, PCR amplification and Southern blotting of bar gene, and fluorescence in situ hybridization (FISH) analysis using pSBM-PPGN as a probe. In Southern blot analysis, diverse band patterns were observed in total 44 transgenic plants regenerated from 20 independent PPT resistant calli showing from one to five copies of T-DNA segments, however, the transformants obtained from one callus line showed the same copy numbers with the same fractionized band patterns.

  • PDF

An easy and efficient protocol in the production of pflp transgenic banana against Fusarium wilt

  • Yip, Mei-Kuen;Lee, Sin-Wan;Su, Kuei-Ching;Lin, Yi-Hsien;Chen, Tai-Yang;Feng, Teng-Yung
    • Plant Biotechnology Reports
    • /
    • v.5 no.3
    • /
    • pp.245-254
    • /
    • 2011
  • This study describes an efficient protocol for Agrobacterium tumefaciens-mediated transformation of two subgroups of genotype AAA bananas (Musa acuminata cv. Pei Chiao and Musa acuminata cv. Gros Michel). Instead of using suspension cells, cauliflower-like bud clumps, also known as multiple bud clumps (MBC), were induced from sucker buds on MS medium containing $N^6$-Benzylaminopurine (BA), Thidiazuron (TDZ), and Paclobutrazol (PP333). Bud slices were co-cultivated with A. tumefaciens C58C1 or EHA105 that carry a plasmid containing Arabidopsis root-type ferredoxin gene (Atfd3) and a plant ferredoxin-like protein (pflp) gene, respectively. These two strains showed differences in transformation efficiency. The EHA105 strain was more sensitive in Pei Chiao, 51.3% bud slices were pflp-transformed, and 12.6% slices were Atfd3-transformed. Gros Michel was susceptible to C58C1 and the transformation efficiency is 4.4% for pflp and 13.1% for Atfd3. Additionally, gene integration of the putative pflp was confirmed by Southern blot. Resulting from the pathogen inoculation assay, we found that the pflp transgenic banana exhibited resistance to Fusarium oxysporum f. sp. cubense tropical race 4. This protocol is highly advantageous to banana cultivars that have difficulties in setting up suspension cultures for the purpose of quality improvement through genetic transformation. In addition, this protocol would save at least 6 months in obtaining explants for transformation and reduce labor for weekly subculture in embryogenic cell suspension culture systems.