• 제목/요약/키워드: Gene regulatory network

검색결과 88건 처리시간 0.02초

Reverse Engineering of a Gene Regulatory Network from Time-Series Data Using Mutual Information

  • Barman, Shohag;Kwon, Yung-Keun
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2014년도 추계학술발표대회
    • /
    • pp.849-852
    • /
    • 2014
  • Reverse engineering of gene regulatory network is a challenging task in computational biology. To detect a regulatory relationship among genes from time series data is called reverse engineering. Reverse engineering helps to discover the architecture of the underlying gene regulatory network. Besides, it insights into the disease process, biological process and drug discovery. There are many statistical approaches available for reverse engineering of gene regulatory network. In our paper, we propose pairwise mutual information for the reverse engineering of a gene regulatory network from time series data. Firstly, we create random boolean networks by the well-known $Erd{\ddot{o}}s-R{\acute{e}}nyi$ model. Secondly, we generate artificial time series data from that network. Then, we calculate pairwise mutual information for predicting the network. We implement of our system on java platform. To visualize the random boolean network graphically we use cytoscape plugins 2.8.0.

CONSTRUCTING GENE REGULATORY NETWORK USING FREQUENT GENE EXPRESSION PATTERN MINING AND CHAIN RULES

  • Park, Hong-Kyu;Lee, Heon-Gyu;Cho, Kyung-Hwan;Ryu, Keun-Ho
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume II
    • /
    • pp.623-626
    • /
    • 2006
  • Group of genes controls the functioning of a cell by complex interactions. These interacting gene groups are called Gene Regulatory Networks (GRNs). Two previous data mining approaches, clustering and classification have been used to analyze gene expression data. While these mining tools are useful for determining membership of genes by homology, they don't identify the regulatory relationships among genes found in the same class of molecular actions. Furthermore, we need to understand the mechanism of how genes relate and how they regulate one another. In order to detect regulatory relationships among genes from time-series Microarray data, we propose a novel approach using frequent pattern mining and chain rule. In this approach, we propose a method for transforming gene expression data to make suitable for frequent pattern mining, and detect gene expression patterns applying FP-growth algorithm. And then, we construct gene regulatory network from frequent gene patterns using chain rule. Finally, we validated our proposed method by showing that our experimental results are consistent with published results.

  • PDF

Inferring candidate regulatory networks in human breast cancer cells

  • Jung, Ju-Hyun;Lee, Do-Heon
    • Bioinformatics and Biosystems
    • /
    • 제2권1호
    • /
    • pp.24-27
    • /
    • 2007
  • Human cell regulatory mechanism is one of suspicious problems among biologists. Here we tried to uncover the human breast cancer cell regulatory mechanism from gene expression data (Marc J. Van de vijver, et. al., 2002) using a module network algorithm which is suggested by Segal, et. al.(2003) Finally, we derived a module network which consists of 50 modules and 10 tree depths. Moreover, to validate this candidate network, we applied a GO enrichment test and known transcription factor-target relationships from Transfac(R) (V. Matys, et. al, 2006) and HPRD database (Peri, S. et al., 2003).

  • PDF

The Construction of Regulatory Network for Insulin-Mediated Genes by Integrating Methods Based on Transcription Factor Binding Motifs and Gene Expression Variations

  • Jung, Hyeim;Han, Seonggyun;Kim, Sangsoo
    • Genomics & Informatics
    • /
    • 제13권3호
    • /
    • pp.76-80
    • /
    • 2015
  • Type 2 diabetes mellitus is a complex metabolic disorder associated with multiple genetic, developmental and environmental factors. The recent advances in gene expression microarray technologies as well as network-based analysis methodologies provide groundbreaking opportunities to study type 2 diabetes mellitus. In the present study, we used previously published gene expression microarray datasets of human skeletal muscle samples collected from 20 insulin sensitive individuals before and after insulin treatment in order to construct insulin-mediated regulatory network. Based on a motif discovery method implemented by iRegulon, a Cytoscape app, we identified 25 candidate regulons, motifs of which were enriched among the promoters of 478 up-regulated genes and 82 down-regulated genes. We then looked for a hierarchical network of the candidate regulators, in such a way that the conditional combination of their expression changes may explain those of their target genes. Using Genomica, a software tool for regulatory network construction, we obtained a hierarchical network of eight regulons that were used to map insulin downstream signaling network. Taken together, the results illustrate the benefits of combining completely different methods such as motif-based regulatory factor discovery and expression level-based construction of regulatory network of their target genes in understanding insulin induced biological processes and signaling pathways.

Knock-out 데이터를 이용한 유전자 조절망의 구성 (Constructing Gene Regulatory Networks using Knock-out Data)

  • 홍성룡;손기락
    • 한국컴퓨터정보학회논문지
    • /
    • 제12권6호
    • /
    • pp.105-113
    • /
    • 2007
  • 유전자 조절망은 유전자의 발현이 다른 유전자에게 영향을 주는 것을 표현하는 유전자 망이다. 오늘날 마이크로 어레이 실험으로부터 유전자의 발현량을 측정한 대용량의 데이터가 이용 가능하다. 전형적인 데이터중의 하나는 특정 유전자를 제거한 후 다른 유전자의 발현량을 측정한 steady-state data이다. 본 논문은 이런 측정 데이터를 이용하여 중복 정보를 최소화하는 유전자 조절망을 재구성하는 방법을 제시한다. 제시한 모델은 기존 연구에서는 고려되지 않았던 사이클 형태로 나타나는 자동 조절 기능을 고려하였고, 또한 유전자의 억제자 또는 촉진자 역할을 고려하였다.

  • PDF

Inferring genetic regulatory networks of the inflammatory bowel disease in human peripheral blood mononuclear cells

  • Kim, Jin-Ki;Lee, Do-Heon;Yi, Gwan-Su
    • Bioinformatics and Biosystems
    • /
    • 제2권2호
    • /
    • pp.71-74
    • /
    • 2007
  • Cell phenotypes are determined by groups of functionally related genes. Microarray profiling of gene expression provides us response of cellular state to its perturbation. Several methods for uncovering a cellular network show reliable network reconstruction. In this study, we present reconstruction of genetic regulatory network of inflammation bowel disease in human peripheral blood mononuclear cell. The microarray based on Affymetrix Gene Chip Human Genome U133 Array Set HG-U133A is processed and applied network reconstruction algorithm, ARACNe. As a result, we will show that inferred network composed of 450 nodes and 2017 edges is roughly scale-free network and hierarchical organization. The major hub, CCNL2 (cyclin A2), in inferred network is shown to be associated with inflammatory function as well as apoptotic function.

  • PDF

빈발 유전자 발현 패턴과 연쇄 규칙을 이용한 유전자 조절 네트워크 구축 (Constructing Gene Regulatory Networks using Frequent Gene Expression Pattern and Chain Rules)

  • 이헌규;류근호;정두영
    • 정보처리학회논문지D
    • /
    • 제14D권1호
    • /
    • pp.9-20
    • /
    • 2007
  • 유전자들의 그룹은 복잡한 상호작용들을 통해 세포의 기능이 조절되며 이러한 상호작용을 하는 유전자 그룹들을 유전자 조절 네트워크 (GRNs: Gene Regulatory Networks)라고 한다. 이전의 유전자 발현 분석 기법인 군집화와 분류는 단지 상동성에 의한 유전자들 사이의 소속을 결정하는 데에는 유용하나 분자 활동에서의 같은 클래스에서 발견되어지는 유전자들 사이의 조절 관계를 식별할 수 없다. 더욱이 유전자들이 어떻게 연관되는 지와 유전자들이 서로 어떻게 조절하는지에 대한 매커니즘의 이해가 필요하다. 따라서 이 논문에서는 시계열 마이크로어레이 데이터로부터의 유전자들의 조절 관계를 발견하기 위해서 빈발 패턴 마이닝과 연쇄 규칙을 이용한 새로운 접근법을 제안하였다. 이 기법에서는 먼저, 빈발 패턴 마이닝 적용을 위한 적절한 데이터 변환 방법을 제안하였고 FP-growth을 이용하여 유전자 발현 패턴들을 발견한다. 그런 다음, 연쇄 규칙을 이용하여 빈발한 유전자 패턴들로부터 유전자 조절 네트워크를 구축하였다. 마지막으로 제안된 기법의 검증은 공개된 유전자들의 조절 관계와 실험 결과의 일치함을 보임으로써 평가하였다.

Review of Biological Network Data and Its Applications

  • Yu, Donghyeon;Kim, MinSoo;Xiao, Guanghua;Hwang, Tae Hyun
    • Genomics & Informatics
    • /
    • 제11권4호
    • /
    • pp.200-210
    • /
    • 2013
  • Studying biological networks, such as protein-protein interactions, is key to understanding complex biological activities. Various types of large-scale biological datasets have been collected and analyzed with high-throughput technologies, including DNA microarray, next-generation sequencing, and the two-hybrid screening system, for this purpose. In this review, we focus on network-based approaches that help in understanding biological systems and identifying biological functions. Accordingly, this paper covers two major topics in network biology: reconstruction of gene regulatory networks and network-based applications, including protein function prediction, disease gene prioritization, and network-based genome-wide association study.

Complex Regulatory Network of MicroRNAs, Transcription Factors, Gene Alterations in Adrenocortical Cancer

  • Zhang, Bo;Xu, Zhi-Wen;Wang, Kun-Hao;Lu, Tian-Cheng;Du, Ye
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권4호
    • /
    • pp.2265-2268
    • /
    • 2013
  • Several lines of evidence indicate that cancer is a multistep process. To survey the mechanisms involving gene alteration and miRNAs in adrenocortical cancer, we focused on transcriptional factors as a point of penetration to build a regulatory network. We derived three level networks: differentially expressed; related; and global. A topology network ws then set up for development of adrenocortical cancer. In this network, we found that some pathways with differentially expressed elements (genetic and miRNA) showed some self-adaption relations, such as EGFR. The differentially expressed elements partially uncovered mechanistic changes for adrenocortical cancer which should guide medical researchers to further achieve pertinent research.

연판 지식을 이용한 유전자 발현 데이터 분석: 퍼지 플러스링과 조절 네트웍 모델링에의 응용 (In-silico inferences for expression data using IGAM: Applied to Fuzzy-Clustering & Regulatory Network Modeling)

  • Lee, Philhyone;Hojeong Nam;Lee, Doheon;Lee, Kwang H.
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2004년도 춘계학술대회 학술발표 논문집 제14권 제1호
    • /
    • pp.273-276
    • /
    • 2004
  • Genome-scale expression data provides us with valuable insights about organisms, but the biological validation of in-silico analysis is difficult and often controversial. Here we present a new approach for integrating previously established knowledge with computational analysis. Based on the known biological evidences, IGAM (Integrated Gene Association Matrix) automatically estimates the relatedness between a pair of genes. We combined this association knowledge to the regulatory network modeling and fuzzy clustering in yeast 5. Cerevisiae. The result was found to be more effective for extracting biological meanings from in-silico inferences for gene expression data.

  • PDF