• Title/Summary/Keyword: Gene regulatory network

Search Result 88, Processing Time 0.028 seconds

Reverse Engineering of a Gene Regulatory Network from Time-Series Data Using Mutual Information

  • Barman, Shohag;Kwon, Yung-Keun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.11a
    • /
    • pp.849-852
    • /
    • 2014
  • Reverse engineering of gene regulatory network is a challenging task in computational biology. To detect a regulatory relationship among genes from time series data is called reverse engineering. Reverse engineering helps to discover the architecture of the underlying gene regulatory network. Besides, it insights into the disease process, biological process and drug discovery. There are many statistical approaches available for reverse engineering of gene regulatory network. In our paper, we propose pairwise mutual information for the reverse engineering of a gene regulatory network from time series data. Firstly, we create random boolean networks by the well-known $Erd{\ddot{o}}s-R{\acute{e}}nyi$ model. Secondly, we generate artificial time series data from that network. Then, we calculate pairwise mutual information for predicting the network. We implement of our system on java platform. To visualize the random boolean network graphically we use cytoscape plugins 2.8.0.

CONSTRUCTING GENE REGULATORY NETWORK USING FREQUENT GENE EXPRESSION PATTERN MINING AND CHAIN RULES

  • Park, Hong-Kyu;Lee, Heon-Gyu;Cho, Kyung-Hwan;Ryu, Keun-Ho
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.623-626
    • /
    • 2006
  • Group of genes controls the functioning of a cell by complex interactions. These interacting gene groups are called Gene Regulatory Networks (GRNs). Two previous data mining approaches, clustering and classification have been used to analyze gene expression data. While these mining tools are useful for determining membership of genes by homology, they don't identify the regulatory relationships among genes found in the same class of molecular actions. Furthermore, we need to understand the mechanism of how genes relate and how they regulate one another. In order to detect regulatory relationships among genes from time-series Microarray data, we propose a novel approach using frequent pattern mining and chain rule. In this approach, we propose a method for transforming gene expression data to make suitable for frequent pattern mining, and detect gene expression patterns applying FP-growth algorithm. And then, we construct gene regulatory network from frequent gene patterns using chain rule. Finally, we validated our proposed method by showing that our experimental results are consistent with published results.

  • PDF

Inferring candidate regulatory networks in human breast cancer cells

  • Jung, Ju-Hyun;Lee, Do-Heon
    • Bioinformatics and Biosystems
    • /
    • v.2 no.1
    • /
    • pp.24-27
    • /
    • 2007
  • Human cell regulatory mechanism is one of suspicious problems among biologists. Here we tried to uncover the human breast cancer cell regulatory mechanism from gene expression data (Marc J. Van de vijver, et. al., 2002) using a module network algorithm which is suggested by Segal, et. al.(2003) Finally, we derived a module network which consists of 50 modules and 10 tree depths. Moreover, to validate this candidate network, we applied a GO enrichment test and known transcription factor-target relationships from Transfac(R) (V. Matys, et. al, 2006) and HPRD database (Peri, S. et al., 2003).

  • PDF

The Construction of Regulatory Network for Insulin-Mediated Genes by Integrating Methods Based on Transcription Factor Binding Motifs and Gene Expression Variations

  • Jung, Hyeim;Han, Seonggyun;Kim, Sangsoo
    • Genomics & Informatics
    • /
    • v.13 no.3
    • /
    • pp.76-80
    • /
    • 2015
  • Type 2 diabetes mellitus is a complex metabolic disorder associated with multiple genetic, developmental and environmental factors. The recent advances in gene expression microarray technologies as well as network-based analysis methodologies provide groundbreaking opportunities to study type 2 diabetes mellitus. In the present study, we used previously published gene expression microarray datasets of human skeletal muscle samples collected from 20 insulin sensitive individuals before and after insulin treatment in order to construct insulin-mediated regulatory network. Based on a motif discovery method implemented by iRegulon, a Cytoscape app, we identified 25 candidate regulons, motifs of which were enriched among the promoters of 478 up-regulated genes and 82 down-regulated genes. We then looked for a hierarchical network of the candidate regulators, in such a way that the conditional combination of their expression changes may explain those of their target genes. Using Genomica, a software tool for regulatory network construction, we obtained a hierarchical network of eight regulons that were used to map insulin downstream signaling network. Taken together, the results illustrate the benefits of combining completely different methods such as motif-based regulatory factor discovery and expression level-based construction of regulatory network of their target genes in understanding insulin induced biological processes and signaling pathways.

Constructing Gene Regulatory Networks using Knock-out Data (Knock-out 데이터를 이용한 유전자 조절망의 구성)

  • Hong, Sung-Ryong;Sohn, Ki-Rack
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.6
    • /
    • pp.105-113
    • /
    • 2007
  • A gene regulatory network is a network of genes representing how genes influence the activities of other genes. Nowadays from microarray experiments, a large number of measurements on the expression levels of genes are available. One of typical data is the so-called "steady-state model" data measuring the expression levels of other genes after knocking out a particular gene. This paper shows how to reverse engineer a parsimonious gene regulatory network, using these measurement data. Our model considers auto-regulation, which forms a cycle in a genetic network. We also model repressor and enhancer roles of genes. which are not considered in previous known methods.

  • PDF

Inferring genetic regulatory networks of the inflammatory bowel disease in human peripheral blood mononuclear cells

  • Kim, Jin-Ki;Lee, Do-Heon;Yi, Gwan-Su
    • Bioinformatics and Biosystems
    • /
    • v.2 no.2
    • /
    • pp.71-74
    • /
    • 2007
  • Cell phenotypes are determined by groups of functionally related genes. Microarray profiling of gene expression provides us response of cellular state to its perturbation. Several methods for uncovering a cellular network show reliable network reconstruction. In this study, we present reconstruction of genetic regulatory network of inflammation bowel disease in human peripheral blood mononuclear cell. The microarray based on Affymetrix Gene Chip Human Genome U133 Array Set HG-U133A is processed and applied network reconstruction algorithm, ARACNe. As a result, we will show that inferred network composed of 450 nodes and 2017 edges is roughly scale-free network and hierarchical organization. The major hub, CCNL2 (cyclin A2), in inferred network is shown to be associated with inflammatory function as well as apoptotic function.

  • PDF

Constructing Gene Regulatory Networks using Frequent Gene Expression Pattern and Chain Rules (빈발 유전자 발현 패턴과 연쇄 규칙을 이용한 유전자 조절 네트워크 구축)

  • Lee, Heon-Gyu;Ryu, Keun-Ho;Joung, Doo-Young
    • The KIPS Transactions:PartD
    • /
    • v.14D no.1 s.111
    • /
    • pp.9-20
    • /
    • 2007
  • Groups of genes control the functioning of a cell by complex interactions. Such interactions of gene groups are tailed Gene Regulatory Networks(GRNs). Two previous data mining approaches, clustering and classification, have been used to analyze gene expression data. Though these mining tools are useful for determining membership of genes by homology, they don't identify the regulatory relationships among genes found in the same class of molecular actions. Furthermore, we need to understand the mechanism of how genes relate and how they regulate one another. In order to detect regulatory relationships among genes from time-series Microarray data, we propose a novel approach using frequent pattern mining and chain rules. In this approach, we propose a method for transforming gene expression data to make suitable for frequent pattern mining, and gene expression patterns we detected by applying the FP-growth algorithm. Next, we construct a gene regulatory network from frequent gene patterns using chain rules. Finally, we validate our proposed method through our experimental results, which are consistent with published results.

Review of Biological Network Data and Its Applications

  • Yu, Donghyeon;Kim, MinSoo;Xiao, Guanghua;Hwang, Tae Hyun
    • Genomics & Informatics
    • /
    • v.11 no.4
    • /
    • pp.200-210
    • /
    • 2013
  • Studying biological networks, such as protein-protein interactions, is key to understanding complex biological activities. Various types of large-scale biological datasets have been collected and analyzed with high-throughput technologies, including DNA microarray, next-generation sequencing, and the two-hybrid screening system, for this purpose. In this review, we focus on network-based approaches that help in understanding biological systems and identifying biological functions. Accordingly, this paper covers two major topics in network biology: reconstruction of gene regulatory networks and network-based applications, including protein function prediction, disease gene prioritization, and network-based genome-wide association study.

Complex Regulatory Network of MicroRNAs, Transcription Factors, Gene Alterations in Adrenocortical Cancer

  • Zhang, Bo;Xu, Zhi-Wen;Wang, Kun-Hao;Lu, Tian-Cheng;Du, Ye
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.4
    • /
    • pp.2265-2268
    • /
    • 2013
  • Several lines of evidence indicate that cancer is a multistep process. To survey the mechanisms involving gene alteration and miRNAs in adrenocortical cancer, we focused on transcriptional factors as a point of penetration to build a regulatory network. We derived three level networks: differentially expressed; related; and global. A topology network ws then set up for development of adrenocortical cancer. In this network, we found that some pathways with differentially expressed elements (genetic and miRNA) showed some self-adaption relations, such as EGFR. The differentially expressed elements partially uncovered mechanistic changes for adrenocortical cancer which should guide medical researchers to further achieve pertinent research.

In-silico inferences for expression data using IGAM: Applied to Fuzzy-Clustering & Regulatory Network Modeling (연판 지식을 이용한 유전자 발현 데이터 분석: 퍼지 플러스링과 조절 네트웍 모델링에의 응용)

  • Lee, Philhyone;Hojeong Nam;Lee, Doheon;Lee, Kwang H.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.273-276
    • /
    • 2004
  • Genome-scale expression data provides us with valuable insights about organisms, but the biological validation of in-silico analysis is difficult and often controversial. Here we present a new approach for integrating previously established knowledge with computational analysis. Based on the known biological evidences, IGAM (Integrated Gene Association Matrix) automatically estimates the relatedness between a pair of genes. We combined this association knowledge to the regulatory network modeling and fuzzy clustering in yeast 5. Cerevisiae. The result was found to be more effective for extracting biological meanings from in-silico inferences for gene expression data.

  • PDF